PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Monoacylglycerols Activate TRPV1 – A Link between Phospholipase C and TRPV1 
PLoS ONE  2013;8(12):e81618.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.
doi:10.1371/journal.pone.0081618
PMCID: PMC3847081  PMID: 24312564
2.  A Polyamine-Deficient Diet Prevents Oxaliplatin-Induced Acute Cold and Mechanical Hypersensitivity in Rats 
PLoS ONE  2013;8(10):e77828.
Background
Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission.
Methods
The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor.
Results
A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity.
Conclusion
A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity.
doi:10.1371/journal.pone.0077828
PMCID: PMC3813736  PMID: 24204988
3.  Disruption of 5-HT2A Receptor-PDZ Protein Interactions Alleviates Mechanical Hypersensitivity in Carrageenan-Induced Inflammation in Rats 
PLoS ONE  2013;8(9):e74661.
Despite common pathophysiological mechanisms, inflammatory and neuropathic pain do not respond equally to the analgesic effect of antidepressants, except for selective serotonin reuptake inhibitors (SSRIs), which show a limited efficacy in both conditions. We previously demonstrated that an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and its associated PDZ proteins (e.g. PSD-95) reveals a 5-HT2A receptor-mediated anti-hyperalgesic effect and enhances the efficacy of fluoxetine (a SSRI) in diabetic neuropathic pain conditions in rats. Here, we have examined whether the same strategy would be useful to treat inflammatory pain. Sub-chronic inflammatory pain was induced by injecting λ-carrageenan (100 µl, 2%) into the left hind paw of the rat. Mechanical hyperalgesia was assessed after acute treatment with TAT-2ASCV or/and fluoxetine (SSRI) 2.5 h after λ-carrageenan injection. Possible changes in the level of 5-HT2A receptors and its associated PDZ protein PSD-95 upon inflammation induction were quantified by Western blotting in dorsal horn spinal cord. Administration of TAT-2ASCV peptide (100 ng/rat, intrathecally) but not fluoxetine (10 mg/kg, intraperitoneally) relieves mechanical hyperalgesia (paw pressure test) in inflamed rats. This anti-hyperalgesic effect involves spinal 5-HT2A receptors and GABAergic interneurons as it is abolished by a 5-HT2A antagonist (M100907, 150 ng/rat, intrathecally) and a GABAA antagonist, (bicuculline, 3 µg/rat, intrathecally). We also found a decreased expression of 5-HT2A receptors in the dorsal spinal cord of inflamed animals which could not be rescued by TAT-2ASCV injection, while the amount of PSD-95 was not affected by inflammatory pain. Finally, the coadministration of fluoxetine does not further enhance the anti-hyperalgesic effect of TAT-2ASCV peptide. This study reveals a role of the interactions between 5-HT2A receptors and PDZ proteins in the pathophysiological pathways of inflammatory pain and opens new perspectives in its control thanks to molecules disrupting 5-HT2A receptor/PDZ protein interactions.
doi:10.1371/journal.pone.0074661
PMCID: PMC3776748  PMID: 24058620
4.  Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain 
PLoS ONE  2013;8(8):e70690.
The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol’s antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol’s analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS.
doi:10.1371/journal.pone.0070690
PMCID: PMC3734263  PMID: 23940628
5.  Nav1.9 Channel Contributes to Mechanical and Heat Pain Hypersensitivity Induced by Subacute and Chronic Inflammation 
PLoS ONE  2011;6(8):e23083.
Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.
doi:10.1371/journal.pone.0023083
PMCID: PMC3155549  PMID: 21857998
6.  Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors 
EMBO Molecular Medicine  2011;3(5):266-278.
Cold hypersensitivity is the hallmark of oxaliplatin-induced neuropathy, which develops in nearly all patients under this chemotherapy. To date, pain management strategies have failed to alleviate these symptoms, hence development of adapted analgesics is needed. Here, we report that oxaliplatin exaggerates cold perception in mice as well as in patients. These symptoms are mediated by primary afferent sensory neurons expressing the thermoreceptor TRPM8. Mechanistically, oxaliplatin promotes over-excitability by drastically lowering the expression of distinct potassium channels (TREK1, TRAAK) and by increasing the expression of pro-excitatory channels such as the hyperpolarization-activated channels (HCNs). These findings are corroborated by the analysis of TREK1-TRAAK null mice and use of the specific HCN inhibitor ivabradine, which abolishes the oxaliplatin-induced cold hypersensibility. These results suggest that oxaliplatin exacerbates cold perception by modulating the transcription of distinct ionic conductances that together shape sensory neuron responses to cold. The translational and clinical implication of these findings would be that ivabradine may represent a tailored treatment for oxaliplatin-induced neuropathy.
doi:10.1002/emmm.201100134
PMCID: PMC3377073  PMID: 21438154
background potassium channels; chemotherapy-induced neuropathy; cold pain; hyperpolarization activated channels; TRPM8
7.  TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception 
PLoS ONE  2010;5(9):e12748.
Background
Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen.
Methodology/Principal Findings
Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E2 (PGE2) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test.
Conclusions
This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain.
doi:10.1371/journal.pone.0012748
PMCID: PMC2941447  PMID: 20862299

Results 1-7 (7)