PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Effects of steroid treatment on lung CC chemokines, apoptosis and transepithelial cell clearance during development and resolution of allergic airway inflammation 
Summary
Background
Steroid treatment of allergic eosinophilic airway diseases is considered to attenuate cell recruitment by inhibiting several chemokines and to cause eosinophil clearance through inducement of apoptosis of these cells. However, roles of these mechanisms in the actions of steroids in vivo have not been fully established. Also, as regards clearance of tissue eosinophils other mechanisms than apoptosis may operate in vivo.
Objective
This study explores anti-inflammatory effects of steroids instituted during either development or resolution of airway allergic inflammation.
Methods
Immunized mice were subjected to week-long daily allergen challenges (ovalbumin). Steroid treatment was instituted either amidst the challenges or exclusively post-allergen challenge. CC chemokines, goblet cell hyperplasia, occurrence of eosinophil apoptosis, and airway tissue as well as lumen eosinophilia were examined at different time-points.
Results
Daily steroids instituted amid the allergen challenges non-selectively attenuated a range of chemokines, permitted egression of tissue eosinophils into airway lumen to increase, and reduced development of lung tissue eosinophilia. Steroid treatment instituted post-challenge selectively inhibited the CC-chemokine regulation upon activation, normal T cell expressed and secrted (RANTES), permitted continued egression of eosinophils into airway lumen, and resolved the tissue eosinophilia. Eosinophil apoptosis rarely occurred at development and resolution of the allergic eosinophilic inflammation whether the animals were steroid treated or not. However, anti-Fas monoclonal antibodies given to mice with established eosinophilia post-challenge produced apoptosis of the tissue eosinophils indicating that apoptotic eosinophils, if they occur, are well detectible in vivo.
Conclusion
Airway tissue eosinophils are likely eliminated through egression into airway lumen with little involvement of apoptosis and phagocytosis. Our data further suggest that therapeutic steroids may resolve airway inflammation by permitting clearance of tissue eosinophils through egression and inhibiting RANTES-dependent cell recruitment to lung tissues.
doi:10.1111/j.1365-2222.2006.02396.x
PMCID: PMC3389735  PMID: 16393273
apoptosis; asthma; chemokines; glucocorticoids
2.  Effects of topical budesonide on epithelial restitution in vivo in guinea pig trachea. 
Thorax  1995;50(7):785-792.
BACKGROUND--Continuous epithelial shedding and restitution processes may characterise the airways in diseases such as asthma. Epithelial restitution involves several humoral and cellular mechanisms that may potentially be affected by inhaled anti-asthma drugs. The present study examines the effect of a topical steroid on epithelial restitution in vivo in the guinea pig. METHODS--The airway epithelium was mechanically removed from well defined areas of guinea pig trachea without surgery and without damage to the basement membrane or bleeding. An anti-inflammatory dose of budesonide (1 mg) was administered repeatedly to the tracheal surface by local superfusion 24 hours before, at (0 hours), and 24 hours after the denudation. Migration of epithelial cells, formation of a plasma exudation-derived gel, and appearance of luminal leucocytes were recorded by scanning electron microscopy. Cell proliferation was visualised by bromodeoxyuridine immunohistochemistry and tissue neutrophils and eosinophils by enzyme histochemistry. RESULTS--Immediately after creation of the denuded zone ciliated and secretory cells on its border dedifferentiated, flattened out, and migrated speedily (mean (SE) 2.3 (0.3) micron/min) over the basement membrane. After 48 hours the entire denuded zone (800 microns wide) was covered by a tightly sealed epithelium; at this time increased proliferation was observed in new and old epithelium and subepithelial cells. Budesonide had no detectable effect on epithelial dedifferentiation, migration, sealing, or proliferation. Immediately after denudation and continuously during the migration phase plasma was extravasated creating a fibrinous gel rich in leucocytes, particularly neutrophils, over the denuded area. Budesonide had no effect on either the gel or the leucocyte density. CONCLUSIONS--These observations suggest that topical glucocorticoids may not interfere with a fast and efficient restitution of the epithelium in the airways.
Images
PMCID: PMC474655  PMID: 7570417

Results 1-2 (2)