PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses 
PLoS Pathogens  2015;11(12):e1005281.
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Author Summary
SUMOylation is a post-translational modification in which a small protein (SUMO) is covalently attached to target proteins. Three key enzymes are controlling this modification: The E1 activating complex composed of the heterodimer Sae1/Sae2, the E2 conjugation enzyme Ubc9 and one of many E3 enzymes which specifically recognize the target protein. SUMOylation regulates many processes such as protein stability, intracellular localization and protein-protein interactions. In our study we identified SUMOylation to be regulating transduction of cells by the human parvovirus adeno-associated virus (AAV). Targeting the E1 or E2 complex by RNA interference led to increased AAV transduction. We also identified putative E3 enzymes involved in this mechanism. Our data indicates that this regulation is mediated by the AAV capsid and it affects different AAV serotypes. Targeting SUMOylation might be a strategy to enhance AAV gene transduction.
doi:10.1371/journal.ppat.1005281
PMCID: PMC4666624  PMID: 26625259
2.  The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization 
Molecular Biology of the Cell  2015;26(2):161-171.
This first systematic and comprehensive screen of human phosphatases for a regulatory role in the survival motor neuron (SMN) complex identifies the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP as a novel SMN complex regulator. PTPN23 maintains a highly phosphorylated state of SMN, which is important for its function in snRNP assembly.
The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly.
doi:10.1091/mbc.E14-06-1151
PMCID: PMC4294665  PMID: 25392300
3.  Identification of HNRNPK as Regulator of Hepatitis C Virus Particle Production 
PLoS Pathogens  2015;11(1):e1004573.
Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses.
Author Summary
As obligate intracellular parasites with limited gene coding capacity viruses exploit host cell machineries for the sake of efficient replication and spread. Thus, identification of these cellular machineries and factors is necessary to understand how a given virus achieves efficient replication and eventually causes host cell damage. Hepatitis C virus (HCV) is an RNA virus replicating in the cytoplasm of hepatocytes. While viral proteins have been studied in great detail, our knowledge about how host cell factors are used by HCV for efficient replication and spread is still scarce. In the present study we conducted a comprehensive RNA-interference-based screen and identified 40 genes that promote the HCV lifecycle and 16 genes that suppress it. Follow-up studies revealed that one of these genes, the heterogeneous nuclear ribonucleoprotein K (HNRNPK), selectively suppresses production of infectious HCV particles. We mapped the domains of HNRNPK required for this suppression and demonstrate that this protein selectively binds to the HCV RNA genome. Based on the correlation between suppression of virus production, HCV RNA binding and recruitment to lipid droplets, we propose that HNRNPK might limit the amount of viral RNA genomes available for incorporation into virus particles. This study provides novel insights into the complexity of reactions that are involved in the formation of HCV virions.
doi:10.1371/journal.ppat.1004573
PMCID: PMC4287573  PMID: 25569684
4.  Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines 
Nucleic Acids Research  2013;41(21):e199.
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.
doi:10.1093/nar/gkt836
PMCID: PMC3834839  PMID: 24049077
6.  The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis 
The Journal of Cell Biology  2013;200(4):505-522.
A functional screen identified MARK4 as a positive regulator of axonemal extension and ciliogenesis via its interaction with the mother centriolar protein ODF2.
Despite the critical contributions of cilia to embryonic development and human health, key regulators of cilia formation await identification. In this paper, a functional RNA interference–based screen linked 30 novel protein kinases with ciliogenesis. Of them, we have studied the role of the microtubule (MT)-associated protein/MT affinity regulating kinase 4 (MARK4) in depth. MARK4 associated with the basal body and ciliary axoneme in human and murine cell lines. Ultrastructural and functional analyses established that MARK4 kinase activity was required for initiation of axoneme extension. We identified the mother centriolar protein ODF2 as an interaction partner of MARK4 and showed that ODF2 localization to the centriole partially depended on MARK4. Our data indicated that, upon MARK4 or ODF2 knockdown, the ciliary program arrested before the complete removal of the CP110–Cep97 inhibitory complex from the mother centriole, suggesting that these proteins act at this level of axonemal extension. We propose that MARK4 is a critical positive regulator of early steps in ciliogenesis.
doi:10.1083/jcb.201206013
PMCID: PMC3575539  PMID: 23400999
7.  Live cell assays to identify regulators of ER to Golgi trafficking 
Traffic (Copenhagen, Denmark)  2012;13(3):416-432.
We applied fluorescence microscopy based quantitative assays to living cells to identify regulators of ER to Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors, which influence Golgi to ER re-localization of GalT-CFP after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when over-expressed for a role in ER to Golgi trafficking. Nine of them interfered with the rate of BFA induced redistribution of GalT-CFP from the Golgi complex to the ER, 6 of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e., Golgi complex) after BFA wash-out, and 6 of them were positive effectors in both assays. Notably, our live cell approach captures regulator function in ER to Golgi trafficking, that were missed in previous fixed cell assays; as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens.
doi:10.1111/j.1600-0854.2011.01318.x
PMCID: PMC3711101  PMID: 22132776
Brefeldin A (BFA); GalT; ER to Golgi trafficking; YIPF; GOT1B; USE1; SACM1L
8.  miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus 
PLoS ONE  2012;7(12):e52555.
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease.
doi:10.1371/journal.pone.0052555
PMCID: PMC3527550  PMID: 23285084
9.  Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment 
Cell host & microbe  2011;9(1):32-45.
SUMMARY
Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα) as required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.
doi:10.1016/j.chom.2010.12.002
PMCID: PMC3433060  PMID: 21238945
10.  Normalizing for individual cell population context in the analysis of high-content cellular screens 
BMC Bioinformatics  2011;12:485.
Background
High-content, high-throughput RNA interference (RNAi) offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology.
Results
We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach.
Conclusions
Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.
doi:10.1186/1471-2105-12-485
PMCID: PMC3259109  PMID: 22185194
11.  Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes 
Nature  2010;464(7289):721-727.
Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the ~21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.
doi:10.1038/nature08869
PMCID: PMC3108885  PMID: 20360735
12.  A Systems Biology Approach To Identify the Combination Effects of Human Herpesvirus 8 Genes on NF-κB Activation▿  
Journal of Virology  2009;83(6):2563-2574.
Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposi's sarcoma and primary effusion lymphoma. Activation of the cellular transcription factor nuclear factor-kappa B (NF-κB) is essential for latent persistence of HHV-8, survival of HHV-8-infected cells, and disease progression. We used reverse-transfected cell microarrays (RTCM) as an unbiased systems biology approach to systematically analyze the effects of HHV-8 genes on the NF-κB signaling pathway. All HHV-8 genes individually (n = 86) and, additionally, all K and latent genes in pairwise combinations (n = 231) were investigated. Statistical analyses of more than 14,000 transfections identified ORF75 as a novel and confirmed K13 as a known HHV-8 activator of NF-κB. K13 and ORF75 showed cooperative NF-κB activation. Small interfering RNA-mediated knockdown of ORF75 expression demonstrated that this gene contributes significantly to NF-κB activation in HHV-8-infected cells. Furthermore, our approach confirmed K10.5 as an NF-κB inhibitor and newly identified K1 as an inhibitor of both K13- and ORF75-mediated NF-κB activation. All results obtained with RTCM were confirmed with classical transfection experiments. Our work describes the first successful application of RTCM for the systematic analysis of pathofunctions of genes of an infectious agent. With this approach, ORF75 and K1 were identified as novel HHV-8 regulatory molecules on the NF-κB signal transduction pathway. The genes identified may be involved in fine-tuning of the balance between latency and lytic replication, since this depends critically on the state of NF-κB activity.
doi:10.1128/JVI.01512-08
PMCID: PMC2648262  PMID: 19129458

Results 1-12 (12)