Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  How Do Haloarchaea Synthesize Aromatic Amino Acids? 
PLoS ONE  2014;9(9):e107475.
Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA.
PMCID: PMC4162585  PMID: 25216252
2.  Complete Genome Sequence of the Extremely Halophilic Archaeon Haloarcula hispanica Strain N601 
Genome Announcements  2014;2(2):e00178-14.
Haloarcula hispanica has been widely used in haloarchaeal studies, particularly in the isolation of haloviruses. The genome of strain N601, a laboratory derivative of the type strain ATCC 33960, was sequenced. Several potentially significant differences from the published sequence of the type strain (CGMCC 1.2049 = ATCC 33960) were observed.
PMCID: PMC3953195  PMID: 24625874
3.  Taxonomic study of the genera Halogeometricum and Halosarcina: transfer of Halosarcina limi and Halosarcina pallida to the genus Halogeometricum as Halogeometricum limi comb. nov. and Halogeometricum pallidum comb. nov., respectively 
Members of the haloarchaeal genera Halosarcina and Halogeometricum (family Halobacteriaceae) are closely related to each other and show 96.6–98 % 16S rRNA gene sequence similarity. This is higher than the accepted threshold value (95 %) to separate two genera, and a taxonomic study using a polyphasic approach of all four members of the two genera was conducted to clarify their relationships. Polar lipid profiles indicated that Halogeometricum rufum RO1-4T, Halosarcina pallida BZ256T and Halosarcina limi RO1-6T are related more to each other than to Halogeometricum borinquense CGMCC 1.6168T. Phylogenetic analyses using the sequences of three different genes (16S rRNA gene, rpoB′ and EF-2) strongly supported the monophyly of these four species, showing that they formed a distinct clade, separate from the related genera Halopelagius, Halobellus, Haloquadratum, Haloferax and Halogranum. The results indicate that the four species should be assigned to the same genus, and it is proposed that Halosarcina pallida and Halosarcina limi be transferred to the genus Halogeometricum as Halogeometricum pallidum comb. nov. (type strain, BZ256T = KCTC 4017T = JCM 14848T) and Halogeometricum limi comb. nov. (type strain, RO1-6T = CGMCC 1.8711T = JCM 16054T).
PMCID: PMC3799225  PMID: 24097833
4.  PH1: An Archaeovirus of Haloarcula hispanica Related to SH1 and HHIV-2 
Archaea  2013;2013:456318.
Halovirus PH1 infects Haloarcula hispanica and was isolated from an Australian salt lake. The burst size in single-step growth conditions was 50–100 PFU/cell, but cell density did not decrease until well after the rise (4–6 hr p.i.), indicating that the virus could exit without cell lysis. Virions were round, 51 nm in diameter, displayed a layered capsid structure, and were sensitive to chloroform and lowered salt concentration. The genome is linear dsDNA, 28,064 bp in length, with 337 bp terminal repeats and terminal proteins, and could transfect haloarchaeal species belonging to five different genera. The genome is predicted to carry 49 ORFs, including those for structural proteins, several of which were identified by mass spectroscopy. The close similarity of PH1 to SH1 (74% nucleotide identity) allowed a detailed description and analysis of the differences (divergent regions) between the two genomes, including the detection of repeat-mediated deletions. The relationship of SH1-like and pleolipoviruses to previously described genomic loci of virus and plasmid-related elements (ViPREs) of haloarchaea revealed an extensive level of recombination between the known haloviruses. PH1 is a member of the same virus group as SH1 and HHIV-2, and we propose the name halosphaerovirus to accommodate these viruses.
PMCID: PMC3622292  PMID: 23585730
5.  Genome of the Haloarchaeon Natronomonas moolapensis, a Neutrophilic Member of a Previously Haloalkaliphilic Genus 
Genome Announcements  2013;1(2):e00095-13.
The genus Natronomonas contains two species, one haloalkaliphile (N. pharaonis) and one neutrophile (N. moolapensis). Here, we report the genome sequence of N. moolapensis strain 8.8.11. The overall genome properties are similar for the two species. Only the neutrophile contains bacteriorhodopsin and a membrane glycolipid.
PMCID: PMC3623002  PMID: 23516216
6.  The immune system of halophilic archaea 
Mobile Genetic Elements  2012;2(5):228-232.
Prokaryotes have developed several strategies to defend themselves against foreign genetic elements. One of those defense mechanisms is the recently identified CRISPR/Cas system, which is used by approximately half of all bacterial and almost all archaeal organisms. The CRISPR/Cas system differs from the other defense strategies because it is adaptive, hereditary and it recognizes the invader by a sequence specific mechanism. To identify the invading foreign nucleic acid, a crRNA that matches the invader DNA is required, as well as a short sequence motif called protospacer adjacent motif (PAM). We recently identified the PAM sequences for the halophilic archaeon Haloferax volcanii, and found that several motifs were active in triggering the defense reaction. In contrast, selection of protospacers from the invader seems to be based on fewer PAM sequences, as evidenced by comparative sequence data. This suggests that the selection of protospacers has stricter requirements than the defense reaction. Comparison of CRISPR-repeat sequences carried by sequenced haloarchaea revealed that in more than half of the species, the repeat sequence is conserved and that they have the same CRISPR/Cas type.
PMCID: PMC3575430  PMID: 23446883
Haloferax volcanii; CRISPR/Cas; PAM; archaea; prokaryotic immune system; haloarchaea
7.  An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA* 
The Journal of Biological Chemistry  2012;287(40):33351-33363.
Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids.
Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response.
Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought.
Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.
PMCID: PMC3460438  PMID: 22767603
Archaea; Microbiology; RNA; RNA Metabolism; RNA Processing; CRISPR/Cas; Haloferax volcanii; PAM
8.  A small basic protein from the brz-brb operon is involved in regulation of bop transcription in Halobacterium salinarum 
BMC Molecular Biology  2011;12:42.
The halophilic archaeon Halobacterium salinarum expresses bacteriorhodopsin, a retinal-protein that allows photosynthetic growth. Transcription of the bop (bacterioopsin) gene is controlled by two transcription factors, Bat and Brz that induce bop when cells are grown anaerobically and under light.
A new gene was identified that is transcribed together with the brz gene that encodes a small basic protein designated as Brb (bacteriorhodopsin-regulating basic protein). The translation activity of the start codon of the brb gene was confirmed by BgaH reporter assays. In vivo site-directed mutagenesis of the brb gene showed that the Brb protein cooperates with Brz in the regulation of bop expression. Using a GFP reporter assay, it was demonstrated that Brb cooperates with both Brz and Bat proteins to activate bop transcription under phototrophic growth conditions.
The activation of the bop promoter was shown to be dependent not only on two major factors, Bat and Brz, but is also tuned by the small basic protein, Brb.
PMCID: PMC3184054  PMID: 21929791
9.  Haloquadratum walsbyi : Limited Diversity in a Global Pond 
PLoS ONE  2011;6(6):e20968.
Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared.
Principal Findings
Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4–20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23T but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23T carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea.
Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species.
PMCID: PMC3119063  PMID: 21701686
10.  Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds 
Extremophiles   2009;14(2):161-169.
Haloquadratum walsbyi is frequently a dominant member of the microbial communities in hypersaline waters. 16S rRNA gene sequences indicate that divergence within this species is very low but relatively few sites have been examined, particularly in the southern hemisphere. The diversity of Haloquadratum was examined in three coastal, but geographically distant saltern crystallizer ponds in Australia, using both culture-independent and culture-dependent methods. Two 97%-OTU, comprising Haloquadratum- and Halorubrum-related sequences, were shared by all three sites, with the former OTU representing about 40% of the sequences recovered at each site. Sequences 99.5% identical to that of Hqr. walsbyi C23T were present at all three sites and, overall, 98% of the Haloquadratum-related sequences displayed ≤2% divergence from that of the type strain. While haloarchaeal diversity at each site was relatively low (9–16 OTUs), seven phylogroups (clones and/or isolates) and 4 different clones showed ≤90% sequence identity to classified taxa, and appear to represent novel genera. Six of these branched together in phylogenetic tree reconstructions, forming a clade (MSP8-clade) whose members were only distantly related to classified taxa. Such sequences have only rarely been previously detected but were found at all three Australian crystallizers.
Electronic supplementary material
The online version of this article (doi:10.1007/s00792-009-0295-6) contains supplementary material, which is available to authorized users.
PMCID: PMC2832888  PMID: 20091074
Archaea; Halobacteria; Halobacteriaceae; Hypersaline; Cultivation; Biodiversity
11.  Culture-Dependent Study of Microbial Diversity of Lake Chaka 
PMCID: PMC1636201  PMID: 17088383
12.  Constituents of SH1, a Novel Lipid-Containing Virus Infecting the Halophilic Euryarchaeon Haloarcula hispanica 
Journal of Virology  2005;79(14):9097-9107.
Recent studies have indicated that a number of bacterial and eukaryotic viruses that share a common architectural principle are related, leading to the proposal of an early common ancestor. A prediction of this model would be the discovery of similar viruses that infect archaeal hosts. Our main interest lies in icosahedral double-stranded DNA (dsDNA) viruses with an internal membrane, and we now extend our studies to include viruses infecting archaeal hosts. While the number of sequenced archaeal viruses is increasing, very little sequence similarity has been detected between bacterial and eukaryotic viruses. In this investigation we rigorously show that SH1, an icosahedral dsDNA virus infecting Haloarcula hispanica, possesses lipid structural components that are selectively acquired from the host pool. We also determined the sequence of the 31-kb SH1 genome and positively identified genes for 11 structural proteins, with putative identification of three additional proteins. The SH1 genome is unique and, except for a few open reading frames, shows no detectable similarity to other published sequences, but the overall structure of the SH1 virion and its linear genome with inverted terminal repeats is reminiscent of lipid-containing dsDNA bacteriophages like PRD1.
PMCID: PMC1168735  PMID: 15994804
13.  Haloviruses HF1 and HF2: Evidence for a Recent and Large Recombination Event 
Journal of Bacteriology  2004;186(9):2810-2817.
Haloviruses HF1 and HF2 were isolated from the same saltern pond and are adapted to hypersaline conditions, where they infect a broad range of haloarchaeal species. The HF2 genome has previously been reported. The complete sequence of the HF1 genome has now been determined, mainly by PCR and primer walking. It was 75,898 bp in length and was 94.4% identical to the HF2 genome but about 1.8 kb shorter. A total of 117 open reading frames and five tRNA-like genes were predicted, and their database matches and characteristics were similar to those found in HF2. A comparison of the predicted restriction digest patterns based on nucleotide sequence with the observed restriction digest patterns of viral DNA showed that, unlike the case for HF2, some packaged HF1 DNA had cohesive termini. Except for a single base change, HF1 and HF2 were identical in sequence over the first 48 kb, a region that includes the early and middle genes. The remaining 28 kb of HF1 showed many differences from HF2, and the similarity of the two genomes over this late gene region was 87%. The abrupt shift in sequence similarity around 48 kb suggests a recent recombination event between either HF1 or HF2 and another HF-like halovirus that has swapped most of the right-end 28 kb. This example indicates there is a high level of recombination among viruses that live in this extreme environment.
PMCID: PMC387818  PMID: 15090523
14.  The life of brine: halophiles in 2001 
Genome Biology  2001;2(12):reports4033.1-reports4033.3.
A report on the International conference on Halophilic Microorganisms, Sevilla, Spain, 23-27 September 2001.
PMCID: PMC138991

Results 1-14 (14)