Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Association of purine asymmetry, strand-biased gene distribution and PolC within Firmicutes and beyond: a new appraisal 
BMC Genomics  2014;15(1):430.
The Firmicutes often possess three conspicuous genome features: marked Purine Asymmetry (PAS) across two strands of replication, Strand-biased Gene Distribution (SGD) and presence of two isoforms of DNA polymerase III alpha subunit, PolC and DnaE. Despite considerable research efforts, it is not clear whether the co-existence of PAS, PolC and/or SGD is an essential and exclusive characteristic of the Firmicutes. The nature of correlations, if any, between these three features within and beyond the lineages of Firmicutes has also remained elusive. The present study has been designed to address these issues.
A large-scale analysis of diverse bacterial genomes indicates that PAS, PolC and SGD are neither essential nor exclusive features of the Firmicutes. PolC prevails in four bacterial phyla: Firmicutes, Fusobacteria, Tenericutes and Thermotogae, while PAS occurs only in subsets of Firmicutes, Fusobacteria and Tenericutes. There are five major compositional trends in Firmicutes: (I) an explicit PAS or G + A-dominance along the entire leading strand (II) only G-dominance in the leading strand, (III) alternate stretches of purine-rich and pyrimidine-rich sequences, (IV) G + T dominance along the leading strand, and (V) no identifiable patterns in base usage. Presence of strong SGD has been observed not only in genomes having PAS, but also in genomes with G-dominance along their leading strands – an observation that defies the notion of co-occurrence of PAS and SGD in Firmicutes. The PolC-containing non-Firmicutes organisms often have alternate stretches of R-dominant and Y-dominant sequences along their genomes and most of them show relatively weak, but significant SGD. Firmicutes having G + A-dominance or G-dominance along LeS usually show distinct base usage patterns in three codon sites of genes. Probable molecular mechanisms that might have incurred such usage patterns have been proposed.
Co-occurrence of PAS, strong SGD and PolC should not be regarded as a genome signature of the Firmicutes. Presence of PAS in a species may warrant PolC and strong SGD, but PolC and/or SGD not necessarily implies PAS.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-430) contains supplementary material, which is available to authorized users.
PMCID: PMC4070872  PMID: 24899249
Fusobacteria; Tenericutes; Thermotogae; G-dominance; Leading strand; Lagging strand; Mutational bias; Cytosine methylation; Codon sites; Base usage
2.  Microbial Lifestyle and Genome Signatures 
Current Genomics  2012;13(2):153-162.
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.
PMCID: PMC3308326  PMID: 23024607
Reductive genome evolution; Intra-amoeba pathogens; Strand-specific codon bias; Genome islands; Trophic strategies; Thermophiles; Halophiles.
3.  A pursuit of lineage-specific and niche-specific proteome features in the world of archaea 
BMC Genomics  2012;13:236.
Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea.
Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs.
Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.
PMCID: PMC3416665  PMID: 22691113
Amino acid usage; Isoelectric point; COG distribution; Methanogen; Sulphur metaboliser; Korarachaeota; Oxygen requirement
4.  Indian genetic disease database 
Nucleic Acids Research  2010;39(Database issue):D933-D938.
Indians, representing about one-sixth of the world population, consist of several thousands of endogamous groups with strong potential for excess of recessive diseases. However, no database is available on Indian population with comprehensive information on the diseases common in the country. To address this issue, we present Indian Genetic Disease Database (IGDD) release 1.0 (—an integrated and curated repository of growing number of mutation data on common genetic diseases afflicting the Indian populations. Currently the database covers 52 diseases with information on 5760 individuals carrying the mutant alleles of causal genes. Information on locus heterogeneity, type of mutation, clinical and biochemical data, geographical location and common mutations are furnished based on published literature. The database is currently designed to work best with Internet Explorer 8 (optimal resolution 1440 × 900) and it can be searched based on disease of interest, causal gene, type of mutation and geographical location of the patients or carriers. Provisions have been made for deposition of new data and logistics for regular updation of the database. The IGDD web portal, planned to be made freely available, contains user-friendly interfaces and is expected to be highly useful to the geneticists, clinicians, biologists and patient support groups of various genetic diseases.
PMCID: PMC3013653  PMID: 21037256
5.  Distinct, ecotype-specific genome and proteome signatures in the marine cyanobacteria Prochlorococcus 
BMC Genomics  2010;11:103.
The marine cyanobacterium Prochlorococcus marinus, having multiple ecotypes of distinct genotypic/phenotypic traits and being the first documented example of genome shrinkage in free-living organisms, offers an ideal system for studying niche-driven molecular micro-diversity in closely related microbes. The present study, through an extensive comparative analysis of various genomic/proteomic features of 6 high light (HL) and 6 low light (LL) adapted strains, makes an attempt to identify molecular determinants associated with their vertical niche partitioning.
Pronounced strand-specific asymmetry in synonymous codon usage is observed exclusively in LL strains. Distinct dinucleotide abundance profiles are exhibited by 2 LL strains with larger genomes and G+C-content ≈ 50% (group LLa), 4 LL strains having reduced genomes and G+C-content ≈ 35-37% (group LLb), and 6 HL strains. Taking into account the emergence of LLa, LLb and HL strains (based on 16S rRNA phylogeny), a gradual increase in average aromaticity, pI values and beta- & coil-forming propensities and a decrease in mean hydrophobicity, instability indices and helix-forming propensities of core proteins are observed. Greater variations in orthologous gene repertoire are found between LLa and LLb strains, while higher number of positively selected genes exist between LL and HL strains.
Strains of different Prochlorococcus groups are characterized by distinct compositional, physicochemical and structural traits that are not mere remnants of a continuous genetic drift, but are potential outcomes of a grand scheme of niche-oriented stepwise diversification, that might have driven them chronologically towards greater stability/fidelity and invoked upon them a special ability to inhabit diverse oceanic environments.
PMCID: PMC2836286  PMID: 20146791
6.  Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes 
Genome Biology  2008;9(4):R70.
A comparative genomic and proteomic study of halophilic and non-halophilic prokaryotes identifies specific genomic and proteomic features typical of halophilic species that are independent from genomic GC-content and taxonomic position.
Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation.
Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history.
The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive.
PMCID: PMC2643941  PMID: 18397532
7.  Reverse Polarization in Amino acid and Nucleotide Substitution Patterns Between Human–Mouse Orthologs of Two Compositional Extrema 
Genome-wide analysis of sequence divergence patterns in 12 024 human–mouse orthologous pairs reveals, for the first time, that the trends in nucleotide and amino acid substitutions in orthologs of high and low GC composition are highly asymmetric and polarized to opposite directions. The entire dataset has been divided into three groups on the basis of the GC content at third codon sites of human genes: high, medium, and low. High-GC orthologs exhibit significant bias in favor of the replacements, Thr → Ala, Ser → Ala, Val → Ala, Lys → Arg, Asn → Ser, Ile → Val etc., from mouse to human, whereas in low-GC orthologs, the reverse trends prevail. In general, in the high-GC group, residues encoded by A/U-rich codons of mouse proteins tend to be replaced by the residues encoded by relatively G/C-rich codons in their human orthologs, whereas the opposite trend is observed among the low-GC orthologous pairs. The medium-GC group shares some trends with high-GC group and some with low-GC group. The only significant trend common in all groups of orthologs, irrespective of their GC bias, is (Asp)Mouse → (Glu)Human replacement. At the nucleotide level, high-GC orthologs have undergone a large excess of (A/T)Mouse → (G/C)Human substitutions over (G/C)Mouse → (A/T)Human at each codon position, whereas for low-GC orthologs, the reverse is true.
PMCID: PMC2533592  PMID: 17895298
high-GC orthologs; low-GC orthologs; amino acid replacement matrix; nucleotide replacement matrix; sequence divergence
8.  Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation 
BMC Genomics  2006;7:186.
Nanoarchaeum equitans, the only known hyperthermophilic archaeon exhibiting parasitic life style, has raised some new questions about the evolution of the Archaea and provided a model of choice to study the genome landmarks correlated with thermo-parasitic adaptation. In this context, we have analyzed the genome and proteome composition of N. equitans and compared the same with those of other mesophiles, hyperthermophiles and obligatory host-associated organisms.
Analysis of nucleotide, codon and amino acid usage patterns in N. equitans indicates the presence of distinct selective constraints, probably due to its adaptation to a thermo-parasitic life-style. Among the conspicuous characteristics featuring its hyperthermophilic adaptation are overrepresentation of purine bases in protein coding sequences, higher GC-content in tRNA/rRNA sequences, distinct synonymous codon usage, enhanced usage of aromatic and positively charged residues, and decreased frequencies of polar uncharged residues, as compared to those in mesophilic organisms. Positively charged amino acid residues are relatively abundant in the encoded gene-products of N. equitans and other hyperthermophiles, which is reflected in their isoelectric point distribution. Pairwise comparison of 105 orthologous protein sequences shows a strong bias towards replacement of uncharged polar residues of mesophilic proteins by Lys/Arg, Tyr and some hydrophobic residues in their Nanoarchaeal orthologs. The traits potentially attributable to the symbiotic/parasitic life-style of the organism include the presence of apparently weak translational selection in synonymous codon usage and a marked heterogeneity in membrane-associated proteins, which may be important for N. equitans to interact with the host and hence, may help the organism to adapt to the strictly host-associated life style. Despite being strictly host-dependent, N. equitans follows cost minimization hypothesis.
The present study reveals that the genome and proteome composition of N. equitans are marked with the signatures of dual adaptation – one to high temperature and the other to obligatory parasitism. While the analysis of nucleotide/amino acid preferences in N. equitans offers an insight into the molecular strategies taken by the archaeon for thermo-parasitic adaptation, the comparative study of the compositional characteristics of mesophiles, hyperthermophiles and obligatory host-associated organisms demonstrates the generality of such strategies in the microbial world.
PMCID: PMC1574309  PMID: 16869956

Results 1-8 (8)