Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Real-time Position Control of Concentric Tube Robots 
A novel approach to constructing robots is based on concentrically combining pre-curved elastic tubes. By rotating and extending the tubes with respect to each other, their curvatures interact elastically to position and orient the robot's tip, as well as to control the robot's shape along its length. Since these robots form slender curves, they are well suited for minimally invasive medical procedures. A substantial challenge to their practical use is the real-time solution of their kinematics that are described by differential equations with split boundary equations. This paper proposes a numerically efficient approach to real-time position control. It is shown that the forward kinematics are smooth functions that can be pre-computed and accurately approximated using Fourier series. The inverse kinematics can be solved in real time using root finding applied to the functional approximation. Experimental demonstration of real-time position control using this approach is also described.
PMCID: PMC3198832  PMID: 22025979
2.  Percutaneous Steerable Robotic Tool Delivery Platform and Metal MEMS Device for Tissue Manipulation and Approximation: Closure of Patent Foramen Ovale in an Animal Model 
Circulation. Cardiovascular interventions  2013;6(4):10.1161/CIRCINTERVENTIONS.112.000324.
Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform (TDP) and tissue approximation device have been developed. Initial results employing these tools to perform patent foramen ovale (PFO) closure are described.
Methods and Results
A robotic TDP comprised of superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that utilizes a metal-based MicroElectroMechanical Systems (MEMS) manufacturing process to produce fully-assembled and fully-functional millimeter-scale tools. As a demonstration of both technologies, a PFO creation and closure was performed in a swine model. In the first group of animals (N=10), a preliminary study was performed. The procedural technique was validated with a transcardiac handheld delivery platform and epicardial echocardiography, video-assisted cardioscopy and fluoroscopy. In the second group (N=9), the procedure was performed percutaneously using the robotic TDP under epicardial echocardiography and fluoroscopy imaging. All PFO’s were completely closed in the first group. In the second group, the PFO was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals.
In contrast to existing robotic catheter technologies, the robotic TDP utilizes a combination of stiffness and active steerability along its length to provide the positioning accuracy and force application capability necessary for tissue manipulation. In combination with a MEMS tool technology, it can enable reconstructive procedures inside the beating heart.
PMCID: PMC3837556  PMID: 23899870
catheter; heart septal defect; surgery; robotics
3.  Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots 
A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g.
PMCID: PMC3825410  PMID: 24241496
4.  Stiffness Control of Surgical Continuum Manipulators 
This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.
PMCID: PMC3837630  PMID: 24273466
Concentric tube robot; continuum robot; Cosserat rod; kinematics; stiffness control
5.  Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound 
Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system’s signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the “tubularity” of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours.
PMCID: PMC3825407  PMID: 24231880
6.  Metal MEMS Tools for Beating-heart Tissue Removal 
A novel robotic tool is proposed to enable the surgical removal of tissue from inside the beating heart. The tool is manufactured using a unique metal MEMS process that provides the means to fabricate fully assembled devices that incorporate micron-scale features in a millimeter scale tool. The tool is integrated with a steerable curved concentric tube robot that can enter the heart through the vasculature. Incorporating both irrigation and aspiration, the tissue removal system is capable of extracting substantial amounts of tissue under teleoperated control by first morselizing it and then transporting the debris out of the heart through the lumen of the robot. Tool design and robotic integration are described and ex vivo experimental results are presented.
PMCID: PMC3825411  PMID: 24232076
7.  Robotic Neuro-Endoscope with Concentric Tube Augmentation 
Surgical robots are gaining favor in part due to their capacity to reach remote locations within the body. Continuum robots are especially well suited for accessing deep spaces such as cerebral ventricles within the brain. Due to the entry point constraints and complicated structure, current techniques do not allow surgeons to access the full volume of the ventricles. The ability to access the ventricles with a dexterous robot would have significant clinical implications. This paper presents a concentric tube manipulator mated to a robotically controlled flexible endoscope. The device adds three degrees of freedom to the standard neuroendoscope and roboticizes the entire package allowing the operator to conveniently manipulate the device. To demonstrate the improved functionality, we use an in-silica virtual model as well as an ex-vivo anatomic model of a patient with a treatable form of hydrocephalus. In these experiments we demonstrate that the augmented and roboticized endoscope can efficiently reach critical regions that a manual scope cannot.
PMCID: PMC3825412  PMID: 24232193
8.  Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools 
Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal microelectromechanical system (MEMS) fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. The effectiveness of the approach is demonstrated through ex vivo and in vivo experiments.
PMCID: PMC3671619  PMID: 23750066
image guided surgery; robotic surgery; MEMS tools; concentric tube robots; intracardiac surgery
9.  Inverse Kinematics of Concentric Tube Steerable Needles 
Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints.
PMCID: PMC3655419  PMID: 23685532
10.  Robotics and imaging in congenital heart surgery 
Future Cardiology  2012;8(2):285-296.
The initial success seen in adult cardiac surgery with the application of available robotic systems has not been realized as broadly in pediatric cardiac surgery. The main obstacles include extended set-up time and complexity of the procedures, as well as the large size of the instruments with respect to the size of the child. Moreover, while the main advantage of robotic systems is the ability to minimize incision size, for intracardiac repairs, cardiopulmonary bypass is still required. Catheter-based interventions, on the other hand, have expanded rapidly in both application as well as the complexity of procedures and lesions being treated. However, despite the development of sophisticated devices, robotic systems to aid catheter procedures have not been commonly applied in children. In this article, we describe new catheter-like robotic delivery platforms, which facilitate safe navigation and enable complex repairs, such as tissue approximation and fixation, and tissue removal, inside the beating heart. Additional features including the tracking of rapidly moving tissue targets and novel imaging approaches are described, along with a discussion of future prospects for steerable robotic systems.
PMCID: PMC3326442  PMID: 22413986
heart surgery; image guided; interventional cardiology; minimally invasive; pediatric; robotics
11.  Detection of Curved Robots using 3D Ultrasound 
Three-dimensional ultrasound can be an effective imaging modality for image-guided interventions since it enables visualization of both the instruments and the tissue. For robotic applications, its realtime frame rates create the potential for image-based instrument tracking and servoing. These capabilities can enable improved instrument visualization, compensation for tissue motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth curve along their length, are well suited for minimally invasive procedures. Existing techniques for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms for continuum robots, this paper presents a method for detecting a robot comprised of a single constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by decomposing the six-dimensional circle estimation problem into two sequential three-dimensional estimation problems. Simulation and experiment are used to evaluate the proposed method.
PMCID: PMC3252206  PMID: 22229110
12.  MRI-powered Actuators for Robotic Interventions 
This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced.
PMCID: PMC3266608  PMID: 22287082
13.  Tubular Structure Enhancement for Surgical Instrument Detection in 3D Ultrasound 
Conference Proceedings  2011;2011:7203-7206.
Three-dimensional ultrasound has been an effective imaging modality for diagnostics and is now an emerging modality for image-guided minimally-invasive interventions since it enables visualization of both instruments and tissue. Challenges to ultrasound-guided interventions arise, however, due to the low signal-to-noise ratio and the imaging artifacts created by the interventional instruments. Metallic instruments, in particular, are strong scatters and so produce a variety of artifacts. For many interventions, the manual or robotic instrument is comprised of a long curved tubular structure with specialized tooling at its tip. Toward the goal of developing a surgical navigation system, this paper proposes an image processing algorithm for enhancing the tubular structure of imaged instruments while also reducing imaging artifacts. Experiments are presented to evaluate the effectiveness of the approach in the context of robotic instruments whose shape comprises a smooth curve along their length.
PMCID: PMC3263977  PMID: 22256000
14.  Beating-heart Mitral Valve Chordal Replacement 
Conference Proceedings  2011;2011:2476-2479.
Replacing open-heart surgical procedures with beating-heart interventions substantially decreases the trauma and risk of a procedure. One of the most challenging procedures to perform on the beating heart is valve repair. To address this need, this paper proposes a tool for replacing mitral valve chordae to correct regurgitation. The chordae is secured to the papillary muscle and leaflet using NiTi tissue anchors that also incorporate an internal adjustment mechanism to enable initial adjustment as well as subsequent readjustment of chordae length. Efficacy of the proposed tool for chordae replacement and reduction of regurgitation was demonstrated in an ex-vivo heart simulator.
PMCID: PMC3294288  PMID: 22254843
15.  Design Optimization of Concentric Tube Robots Based on Task and Anatomical Constraints 
Concentric tube robots are a novel continuum robot technology that is well suited to minimally invasive surgeries inside small body cavities such as the heart. These robots are constructed of concentrically combined pre-curved elastic tubes to form 3D curves. Each telescopic section of the robot is either of fixed or variable curvature. One advantage of this approach is that the component tube curvatures, lengths and stiffnesses can easily be fabricated to be procedure- and patient-specific. This paper proposes an optimization framework for solving the robot design problem. Given a 3D description of the constraining anatomy, the number of fixed and variable curvature robot sections and a tip workspace description, the algorithm solves for the robot design that possesses the desired workspace, remains inside the anatomical constraints and minimizes the curvature and length of all sections. The approach is illustrated in the context of beating-heart closure of atrial septal defects.
PMCID: PMC3252204  PMID: 22229108
16.  Metal MEMS Tools for Beating-heart Tissue Approximation 
Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal MEMS fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. Experimental results demonstrate device efficacy through manual in-vivo deployment and bench-top robotic deployment.
PMCID: PMC3252216  PMID: 22229109
17.  Friction Modeling in Concentric Tube Robots 
Concentric tube robots are a novel class of continuum robots that are constructed by combining pre-curved elastic tubes such that the overall shape of the robot is a function of the relative rotations and translations of the constituent tubes. Frictionless kinematic and quasistatic force models for this class of robots have been developed that incorporate bending and twisting of the tubes. Experimental evaluation of these models has revealed, however, a directional dependence of tube rotation on robot shape that is not predicted by these models. To explain this behavior, this paper models the contributions of friction arising from two sources: the distributed forces of contact between the tubes along their length and the concentrated bending moments generated at discontinuities in curvature and at the boundaries. It is shown that while friction due to distributed forces is insufficient to explain the experimentally observed tube twisting, a simple model of frictional torque arising from concentrated moments provides a good match with the experimental data.
PMCID: PMC3282594  PMID: 22358252
18.  Port Placement Planning in Robot-Assisted Coronary Artery Bypass 
Properly selected port sites for robot-assisted coronary artery bypass graft (CABG) improve the efficiency and quality of these procedures. In clinical practice, surgeons select port locations using external anatomic landmarks to estimate a patient’s internal anatomy. This paper proposes an automated approach to port selection based on a preoperative image of the patient, thus avoiding the need to estimate internal anatomy. Using this image as input, port sites are chosen from a grid of surgeon-approved options by defining a performance measure for each possible port triad. This measure seeks to minimize the weighted squared deviation of the instrument and endoscope angles from their optimal orientations at each internal surgical site. This performance measure proves insensitive to perturbations in both its weighting factors and moderate intraoperative displacements of the patient’s internal anatomy. A validation study of this port site selection was performed. cardiac algorithm also Six surgeons dissected model vessels using the port triad selected by this algorithm with performance compared to dissection using a surgeon-selected port triad and a port triad template described by Tabaie et al., 1999. With the algorithm-selected ports, dissection speed increased by up to 43% (p = 0.046) with less overall vessel trauma. Thus, this algorithmic approach to port site selection has important clinical implications for robot-assisted CABG which warrant further investigation.
PMCID: PMC3265792  PMID: 22287831
Medical robotics; port placement; teleoperation
19.  Quasistatic Modeling of Concentric Tube Robots with External Loads 
Concentric tube robots are a subset of continuum robots constructed by combining pre-curved elastic tubes. As the tubes are rotated and translated with respect to each other, their curvatures interact elastically, enabling control of the robot's tip configuration as well as the curvature along its length. This technology is projected to be useful in many types of minimally invasive medical procedures. Because these robots are flexible by design, they deflect considerably when applying forces to the external environment. Thus, in contrast to rigid-link robots, their kinematic and static force models are coupled. This paper derives a multi-tube quasistatic model that relates tube rotations and translations together with externally applied loads to robot shape and tip configuration. The model can be applied in robot design, procedure planning as well as control. For validation, the multi-tube model is compared experimentally to a computationally-efficient single-tube approximate model.
PMCID: PMC3028209  PMID: 21278853
20.  Stiffness Control of a Continuum Manipulator in Contact with a Soft Environment 
Stiffness control of a continuum robot can prevent excessive contact forces during robot navigation inside delicate, uncertain and confined environments. Furthermore, it enables the selection of tip stiffnesses that match varying task requirements. This paper introduces a computationally-efficient approach to continuum-robot stiffness control that is based on writing the forward kinematic model as the product of two transformations. The first transformation calculates the non-contact kinematics of the robot and can be formulated based on the specific type of continuum robot under consideration. The second transformation calculates the tip deflection due to applied forces and is efficiently computed using the special Cosserat rod model. To implement a desired tip stiffness, the two transformations are used to solve for the actuator positions that deform the manipulator so as to generate the required tip force at the measured tip position. The efficacy of the proposed controller is demonstrated experimentally on a concentric-tube continuum robot.
PMCID: PMC3051195  PMID: 21399719
21.  Torsional Kinematic Model for Concentric Tube Robots 
A recent approach to steerable needle design is based on combining pre-curved tubes concentrically. By rotating and extending the tubes with respect to each other, the position and orientation of the needle tip, as well as the shape of the inserted length, can be controlled. Prior models neglected torsional twisting in the curved portions of the tubes. This paper presents a mechanics model that includes torsion, applies to any number of tubes and allows curvature and stiffness to vary with arc length. While the general model is comprised of differential equations, an analytic solution is given for two tubes of constant curvature. This solution enables analytic prediction of “snap through” instability based on a single dimensionless parameter. Simulation and experiments are used to illustrate the results.
PMCID: PMC3071574  PMID: 21479158
22.  Mechanics of Dynamic Needle Insertion into a Biological Material 
During needle-based procedures, transitions between tissue layers often lead to rupture events that involve large forces and tissue deformations and produce uncontrollable crack extensions. In this paper, the mechanics of these rupture events is described, and the effect of insertion velocity on needle force, tissue deformation, and needle work is analyzed. Using the J integral method from fracture mechanics, rupture events are modeled as sudden crack extensions that occur when the release rate J of strain energy concentrated at the tip of the crack exceeds the fracture toughness of the material. It is shown that increasing the velocity of needle insertion will reduce the force of the rupture event when it increases the energy release rate. A nonlinear viscoelastic Kelvin model is then used to predict the relationship between the deformation of tissue and the rupture force at different velocities. The model predicts that rupture deformation and work asymptotically approach minimum values as needle velocity increases. Consequently, most of the benefit of using a higher needle velocity can be achieved using a finite velocity that is inversely proportional to the relaxation time of the tissue. Experiments confirm the analytical predictions with multilayered porcine cardiac tissue.
PMCID: PMC3021974  PMID: 19932986
Cutting; fracture; highly deformable bodies; needle insertion; surgical robotics; tissue dynamics
23.  Design and Control of Concentric-Tube Robots 
A novel approach toward construction of robots is based on a concentric combination of precurved elastic tubes. By rotation and extension of the tubes with respect to each other, their curvatures interact elastically to position and orient the robot’s tip, as well as to control the robot’s shape along its length. In this approach, the flexible tubes comprise both the links and the joints of the robot. Since the actuators attach to the tubes at their proximal ends, the robot itself forms a slender curve that is well suited for minimally invasive medical procedures. This paper demonstrates the potential of this technology. Design principles are presented and a general kinematic model incorporating tube bending and torsion is derived. Experimental demonstration of real-time position control using this model is also described.
PMCID: PMC3022350  PMID: 21258648
Continuum robots; flexible arms; kinematics; medical robots and systems; telerobotics
24.  Fast Needle Insertion to Minimize Tissue Deformation and Damage 
During needle-based procedures, transitions between tissue layers often involve puncture events that produce substantial deformation and tend to drive the needle off course. In this paper, we analyze the mechanics of these rupture events corresponding to unstable crack propagation during the insertion of a sharp needle in an inhomogeneous tissue. The force-deflection curve of the needle prior to a rupture event is modeled by a nonlinear viscoelastic Kelvin model and a stress analysis is used to predict the relationship between rupture force and needle velocity. The model predicts that the force-deflection response of the needle is steeper and the tissue absorbs less energy when the needle moves faster. The force of rupture also decreases for faster insertion under certain conditions. The observed properties are sufficient to show that maximizing needle velocity minimizes tissue deformation and damage, and consequently, results in less needle insertion position error. The model predicts that tissue deformation and absorbed energy asymptotically approach lower bounds as velocity increases. Experiments with porcine cardiac tissue confirm the analytical predictions.
PMCID: PMC3051196  PMID: 21399738
25.  GPU Based Real-time Instrument Tracking with Three Dimensional Ultrasound 
Medical image analysis  2007;11(5):458-464.
Real-time three-dimensional ultrasound enables new intra-cardiac surgical procedures, but the distorted appearance of instruments in ultrasound poses a challenge to surgeons. This paper presents a detection technique that identifies the position of the instrument within the ultrasound volume. The algorithm uses a form of the generalized Radon transform to search for long straight objects in the ultrasound image, a feature characteristic of instruments and not found in cardiac tissue. When combined with passive markers placed on the instrument shaft, the full position and orientation of the instrument is found in 3D space. This detection technique is amenable to rapid execution on the current generation of personal computer graphics processor units (GPU). Our GPU implementation detected a surgical instrument in 31 ms, sufficient for real-time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank experiment found instrument orientation errors of 1.1 degrees and tip position errors of less than 1.8 mm. Finally, an in vivo study demonstrated successful instrument tracking inside a beating porcine heart.
PMCID: PMC2693901  PMID: 17681483

Results 1-25 (25)