PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  In Vivo Evaluation of pathogenicity and transmissibility of influenza A(H1N1)pdm09 hemagglutinin receptor binding domain 222 intrahost variants isolated from a single immunocompromised patient 
Virology  2012;428(1):21-29.
The influenza A(H1N1)pdm09 virus has circulated worldwide and continued to cause complicated infections and deaths. Reports have identified an increased prevalence of the hemagglutinin receptor binding domain D222G mutation in viruses isolated from individuals who have suffered such severe infections, but this association is still unclear. Virus isolated from a nasopharyngeal wash of a severely ill immunocompromised patient at the time of diagnosis contained the D222, but isolates collected later in his course from a bronchoalveolar lavage contained primarily the G222 mutation and was mixed with a minor population of D222. These clinical isolates were compared to a G222 plaque purified virus in the ferret model. The G222 predominant clinical isolate was the most pathogenic in ferrets and developed the most diversity at the 222 amino acid position during infection, suggesting that increased diversity and not a specific polymorphism at HA 222 may be important in predicting pathogenic potential.
doi:10.1016/j.virol.2012.02.018
PMCID: PMC3350642  PMID: 22575875
Influenza A; A(H1N1)pdm09; pathogenesis; D222G; Hemagglutinin; immunocompromised; pandemic; ferrets
2.  HASP server: a database and structural visualization platform for comparative models of influenza A hemagglutinin proteins 
BMC Bioinformatics  2013;14:197.
Background
Influenza A viruses possess RNA genomes that mutate frequently in response to immune pressures. The mutations in the hemagglutinin genes are particularly significant, as the hemagglutinin proteins mediate attachment and fusion to host cells, thereby influencing viral pathogenicity and species specificity. Large-scale influenza A genome sequencing efforts have been ongoing to understand past epidemics and pandemics and anticipate future outbreaks. Sequencing efforts thus far have generated nearly 9,000 distinct hemagglutinin amino acid sequences.
Description
Comparative models for all publicly available influenza A hemagglutinin protein sequences (8,769 to date) were generated using the Rosetta modeling suite. The C-alpha root mean square deviations between a randomly chosen test set of models and their crystallographic templates were less than 2 Å, suggesting that the modeling protocols yielded high-quality results. The models were compiled into an online resource, the Hemagglutinin Structure Prediction (HASP) server. The HASP server was designed as a scientific tool for researchers to visualize hemagglutinin protein sequences of interest in a three-dimensional context. With a built-in molecular viewer, hemagglutinin models can be compared side-by-side and navigated by a corresponding sequence alignment. The models and alignments can be downloaded for offline use and further analysis.
Conclusions
The modeling protocols used in the HASP server scale well for large amounts of sequences and will keep pace with expanded sequencing efforts. The conservative approach to modeling and the intuitive search and visualization interfaces allow researchers to quickly analyze hemagglutinin sequences of interest in the context of the most highly related experimental structures, and allow them to directly compare hemagglutinin sequences to each other simultaneously in their two- and three-dimensional contexts. The models and methodology have shown utility in current research efforts and the ongoing aim of the HASP server is to continue to accelerate influenza A research and have a positive impact on global public health.
doi:10.1186/1471-2105-14-197
PMCID: PMC3693987  PMID: 23777206
Influenza A; HASP; Hemagglutinin; Receptor binding; Membrane fusion; ROSETTA; Sialic acid; Flu; Homology modeling; Molecular visualization
3.  Analysis by Single-Gene Reassortment Demonstrates that the 1918 Influenza Virus Is Functionally Compatible with a Low-Pathogenicity Avian Influenza Virus in Mice 
Journal of Virology  2012;86(17):9211-9220.
The 1918-1919 “Spanish” influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight “7:1” chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.
doi:10.1128/JVI.00887-12
PMCID: PMC3416129  PMID: 22718825
4.  Phylogenetic Analysis of Low Pathogenicity H5N1 and H7N3 Influenza A Virus Isolates Recovered from Sentinel, Free Flying, Wild Mallards at One Study Site During 2006 
Virology  2011;417(1):98-105.
From August 2-October 11, 2006, clusters of low pathogenicity (LP) North American lineage H5N1 and H7N3 avian influenza A viruses (AIV), and other subtypes, were recovered from free-flying, resident, wild mallards used as sentinels at one site. The antigenic subtypes, pathogenicity potential, and Sanger sequencing of the isolates determined the H5N1 and H7N3 isolates were only recovered from samples collected on 8/2/2006 and 9/8/2006, respectively. However, subsequent efforts using next-generation sequencing (NGS) and additional Sanger sequencing found partial H7 segments in other HA-NA virus combinations on 8/2/2006, 9/8/2006 and 10/11/2006. It is well established that over larger geographic areas and years AIVs form transient genomic constellations; this sequential sampling data revealed that over a short period of time the dynamics of AIVs can be active and newer sequencing platforms increase recognition of mixed infections. Both findings provide further insight into the natural history of AIVs in natural reservoirs.
doi:10.1016/j.virol.2011.05.004
PMCID: PMC3157087  PMID: 21658737
5.  The origin and phylogeography of dog rabies virus 
The Journal of General Virology  2008;89(Pt 11):2673-2681.
Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV.
doi:10.1099/vir.0.2008/003913-0
PMCID: PMC3326349  PMID: 18931062
6.  Different Evolutionary Trajectories of European Avian-Like and Classical Swine H1N1 Influenza A Viruses▿ †  
Journal of Virology  2009;83(11):5485-5494.
In 1979, a lineage of avian-like H1N1 influenza A viruses emerged in European swine populations independently from the classical swine H1N1 virus lineage that had circulated in pigs since the Spanish influenza pandemic of 1918. To determine whether these two distinct lineages of swine-adapted A/H1N1 viruses evolved from avian-like A/H1N1 ancestors in similar ways, as might be expected given their common host species and origin, we compared patterns of nucleotide and amino acid change in whole genome sequences of both groups. An analysis of nucleotide compositional bias across all eight genomic segments for the two swine lineages showed a clear lineage-specific bias, although a segment-specific effect was also apparent. As such, there appears to be only a relatively weak host-specific selection pressure. Strikingly, despite each lineage evolving in the same species of host for decades, amino acid analysis revealed little evidence of either parallel or convergent changes. These findings suggest that although adaptation due to evolutionary lineages can be distinguished, there are functional and structural constraints on all gene segments and that the evolutionary trajectory of each lineage of swine A/H1N1 virus has a strong historical contingency. Thus, in the context of emergence of an influenza A virus strain via a host switch event, it is difficult to predict what specific polygenic changes are needed for mammalian adaptation.
doi:10.1128/JVI.02565-08
PMCID: PMC2681951  PMID: 19297491

Results 1-6 (6)