PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1 
Molecular Biology of the Cell  2012;23(2):337-346.
The Sec6 subunit of the multisubunit exocyst tethering complex interacts with the Sec1/Munc18 protein Sec1 and with the t-SNARE Sec9. Assembly of the exocyst upon vesicle arrival at sites of secretion is proposed to release Sec9 for SNARE complex assembly and to recruit Sec1 for interaction with SNARE complexes to facilitate fusion.
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function—it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6–Sec1 interaction is exclusive of Sec6–Sec9 but compatible with Sec6–exocyst assembly. In contrast, the Sec6–exocyst interaction is incompatible with Sec6–Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6–exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.
doi:10.1091/mbc.E11-08-0670
PMCID: PMC3258177  PMID: 22114349

Results 1-1 (1)