Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization 
Translational cancer research  2013;2(4):280-291.
The potential of gold nanoparticles (GNPs) in therapeutic and diagnostic cancer applications is becoming increasingly recognized. These biologically compatible particles can be easily synthesized, tuned to different sizes, and functionalized by conjugation to various biologically useful materials. Efficient and specific delivery to tumor tissue can then be accomplished either by passive accumulation in leaky tumor vessels and tissue, or by directly targeting tumor-specific biomarkers. Tumor-localized GNPs can serve as both adjuvants for enhancing the efficacy of radiation therapy and also as contrast agents for various imaging modalities. In this review, we will discuss recent advancements and future potential in the application of GNP as both a radiosensitizer and an imaging contrast agent. Due to their versatility and biocompatibility, gold nanoparticles may represent a novel theranostic adjuvant for radiation applications in cancer management.
PMCID: PMC4241969  PMID: 25429358
Gold Nanoparticle (GNP); theranostics; radiosensitization; nanoscale
2.  Detection of Brain Tumor Cells in the Peripheral Blood by a Telomerase Promoter-Based Assay 
Cancer research  2014;74(8):2152-2159.
Blood tests to detect circulating tumor cells (CTC) offer great potential to monitor disease status, gauge prognosis, and guide treatment decisions for patients with cancer. For patients with brain tumors, such as aggressive glioblastoma multiforme, CTC assays are needed that do not rely on expression of cancer cell surface biomarkers like epithelial cell adhesion molecules that brain tumors tend to lack. Here, we describe a strategy to detect CTC based on telomerase activity, which is elevated in nearly all tumor cells but not normal cells. This strategy uses an adenoviral detection system that is shown to successfully detect CTC in patients with brain tumors. Clinical data suggest that this assay might assist interpretation of treatment response in patients receiving radiotherapy, for example, to differentiate pseudoprogression from true tumor progression. These results support further development of this assay as a generalized method to detect CTC in patients with cancer.
PMCID: PMC4144786  PMID: 24525740
3.  Theranostic Gold Nanoparticles Modified for Durable Systemic Circulation Effectively and Safely Enhance the Radiation Therapy of Human Sarcoma Cells and Tumors12 
Translational Oncology  2013;6(6):722-731.
Radiation therapy (RT) is an integral component of the treatment of many sarcomas and relies on accurate targeting of tumor tissue. Despite conventional treatment planning and RT, local failure rates of 10% to 28% at 5 years have been reported for locally advanced, unresectable sarcomas, due in part to limitations in the cumulative RT dose that may be safely delivered. We describe studies of the potential usefulness of gold nanoparticles modified for durable systemic circulation (through polyethylene glycosylation; hereinafter “P-GNPs”) as adjuvants for RT of sarcomas. In studies of two human sarcoma-derived cell lines, P-GNP in conjunction with RT caused increased unrepaired DNA damage, reflected by approximately 1.61-fold increase in γ-H2AX (histone phosphorylated on Ser139) foci density compared with RT alone. The combined RT and P-GNP also led to significantly reduced clonogenic survival of tumor cells, compared to RT alone, with dose-enhancement ratios of 1.08 to 1.16. In mice engrafted with human sarcoma tumor cells, the P-GNP selectively accumulated in the tumor and enabled durable imaging, potentially aiding radiosensitization as well as treatment planning. Mice pretreated with P-GNP before targeted RT of their tumors exhibited significantly improved tumor regression and overall survival, with long-term survival in one third of mice in this treatment group compared to none with RT only. Interestingly, prior RT of sarcoma tumors increased subsequent extravasation and in-tumor deposition of P-GNP. These results together suggest P-GNP may be integrated into the RT of sarcomas, potentially improving target imaging and radiosensitization of tumor while minimizing dose to normal tissues.
PMCID: PMC3890707  PMID: 24466375
4.  Dissecting the complex regulation of Mad4 in glioblastoma multiforme cells 
Cancer Biology & Therapy  2012;13(13):1339-1348.
Among proteins in the c-Myc/Max/Mad/Sin3 regulatory complex, Mad4 and Sin3B are routinely detected in human glioblastoma multiforme (GBM) cell lines. In response to gamma radiation, the expression of Sin3B and Mad4 in GBM cells was upregulated in parallel over time, suggesting that Sin3B may play a role in the regulation of Mad4 stability. In agreement with this hypothesis, exogenously expressed Sin3B significantly stabilized co-transfected Mad4 and, to a lesser extent, endogenous Mad4. In addition, siRNA silencing of Sin3B induced an increase in the expression of c-Myc and Sin3A, which contributed to increased expression of Mad4. Simultaneous silencing of Sin3B, Sin3A and c-Myc decreased Mad4 stability to a greater extent than silencing of Sin3B alone. Although Mad1 was reported to be a target of c-IAP1 E3 ligase activity for degradation, the E3 ligase activity of c-IAP1 was not required for downregulation of Mad4 expression. The association of c-IAP1 with Sin3B or Mad4 suggested that Sin3B might interfere with the binding of c-IAP1 to Mad4; however, overexpression of Sin3B did not affect the interaction between Mad4 and c-IAP1. Instead, direct binding of Sin3B to c-IAP1 may protect Mad4 from degradation by c-IAP1, leading to enhanced stability of Mad4. Exogenous expression of Sin3B also inhibited c-IAP1-mediated degradation of Mad1, TRAF2, c-IAP2 and ASK1, known targets of c-IAP1 E3 ligase activity. These results indicate that Sin3B, together with other c-Myc regulatory members, maintain the steady-state level of Mad4, in part through inhibition of c-IAP1-mediated degradation of Mad4.
PMCID: PMC3493442  PMID: 22895069
Mad4; Sin3A; Sin3B; c-IAP1; c-Myc; glioblastoma multiforme cell lines
5.  Enhancing the Efficacy of Drug-loaded Nanocarriers against Brain Tumors by Targeted Radiation Therapy 
Oncotarget  2013;4(1):64-79.
Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by >50% (p<0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.
PMCID: PMC3702208  PMID: 23296073
glioblastoma multiforme; nanocarrier; radiation therapy; brain tumors; chemotherapy
6.  An Integrated Method for Reproducible and Accurate Image-Guided Stereotactic Cranial Irradiation of Brain Tumors Using the Small Animal Radiation Research Platform1 
Translational Oncology  2012;5(4):230-237.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.
PMCID: PMC3431032  PMID: 22937174
7.  A Multifunctional Nanoplatform for Imaging, Radiotherapy, and the Prediction of Therapeutic Response 
Gold nanoparticles have garnered interest as both radiosensitzers and computed tomography (CT) contrast agents. However, the extremely high concentrations of gold required to generate CT contrast is far beyond that needed for meaningful radiosensitization, which limits their use as combined therapeutic–diagnostic (theranostic) agents. To establish a theranostic nanoplatform with well-aligned radiotherapeutic and diagnostic properties for better integration into standard radiation therapy practice, a gold- and superparamagnetic iron oxide nanoparticle (SPION)-loaded micelle (GSM) is developed. Intravenous injection of GSMs into tumor-bearing mice led to selective tumoral accumulation, enabling magnetic resonance (MR) imaging of tumor margins. Subsequent irradiation leads to a 90-day survival of 71% in GSM-treated mice, compared with 25% for irradiation-only mice. Furthermore, measurements of the GSM-enhanced MR contrast are highly predictive of tumor response. Therefore, GSMs may not only guide and enhance the efficacy of radiation therapy, but may allow patients to be managed more effectively.
PMCID: PMC4329028  PMID: 25264301
8.  A phase I study of nelfinavir concurrent with temozolomide and radiotherapy in patients with glioblastoma multiforme 
Journal of neuro-oncology  2013;116(2):365-372.
We conducted a phase I trial to examine the maximally tolerated dose (MTD) of the oral protease inhibitor nelfinavir (NFV) in combination with temozolomide and concurrent radiotherapy in patients with glioblastoma and to gather preliminary data for response. The study was conducted in patients with newly diagnosed glioblastoma after surgical resection. Patients were treated with standard radiotherapy (6,000 cGy to the gross tumor volume), temozolomide (75 mg/m2 daily) together with daily oral NFV starting 7–10 days prior to chemoradiotherapy continuing for the duration of chemoradiation for 6 weeks. Temozolomide (150–200 mg/m2) was resumed 4 weeks after completion of chemoradiotherapy. Two dose levels of NFV were investigated: 625 mg twice daily (bid) and 1,250 mg bid in a cohort escalation design. A total of 21 patients were enrolled. At the maximum tolerated dose, 18 subjects were enrolled to further evaluate toxicity and for preliminary estimate of efficacy for further phase II study. No dose-limiting toxicity was noted at 625 mg bid. At 1,250 mg bid, 3 dose-limiting episodes of hepatotoxicity were noted and one dose-limiting episode of diarrhea. The MTD for this study was 1,250 mg bid. NFV (1,250 mg bid) concurrent with temozolomide and radiotherapy is tolerated in most patients with glioblastoma. At the 1,250 mg bid dose level, patients should be monitored for hepatotoxicity and GI side effects.
PMCID: PMC4116080  PMID: 24194293
Nelfinavir; Glioblastoma; Malignant glioma; Radiation therapy; Radiosensitizer
9.  Gamma Knife radiosurgery to four or more brain metastases in patients without prior intracranial radiation or surgery 
Cancer Medicine  2014;3(3):565-571.
Data on stereotactic radiosurgery (SRS) for four or more metastases are limited. Existing studies are confounded by significant proportions of patients receiving prior whole-brain radiation therapy (WBRT) or concurrent WBRT with SRS. Furthermore, published results disagree about the impact of tumor volume on overall survival. A retrospective review identified 38 patients without prior intracranial radiation or surgery who received Gamma Knife (GK) as sole treatment to ≥4 brain metastases in a single session. Twenty-eight cases with follow-up imaging were analyzed for intracranial progression. Prognostic factors were examined by univariate (log-rank test) and multivariate (Cox proportional hazards model) analyses. Common primary tumors were non-small cell lung (45%), melanoma (37%), and breast (8%). Cases were recursive partitioning analysis class II (94%) or III (6%). Patients harbored a median five tumors (range 4–12) with median total tumor volume of 1.2 cc. A median dose of 21 Gy was prescribed to the 50% isodose line. Patients survived a median 6.7 months from GK. Local treatment failure occurred in one case (4%) and distant failure in 22 (79%). On multivariate analysis, total tumor volume ≥3 cc was significantly associated with distant failure and worsened overall survival (P = 0.042 and 0.040). Fourteen patients (37%) underwent salvage WBRT at a median 10.3 months from GK and seven patients received repeat GK. GK as sole initial treatment for four or more simultaneous metastases spares some patients WBRT and delays it for others. Increased total tumor volume (≥3 cc) is significantly associated with worsened overall survival.
PMCID: PMC4101747  PMID: 24510602
Gamma Knife radiosurgery; radiation therapy neoplasm metastases; stereotactic radiosurgery; survival; tumor volume
10.  Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3β and CDK1 
Cancer research  2011;71(15):5265-5275.
Tumor hypoxia is an inherent impediment to cancer treatment that is both clinically significant and problematic. In this study, we performed a cell-based screen to identify small molecules that could reverse the apoptotic resistance of hypoxic cancer cells. Among the compounds we identified were a structurally-related group that sensitized hypoxic cancer cells to apoptosis by inhibiting the kinases GSK-3β and CDK1. Combinatorial inhibition of these proteins in hypoxic cancer cells and tumors increased levels of c-Myc and decreased expression of c-IAP2 and the central hypoxia response regulator Hif-1α. In mice, these compounds augmented the hypoxic tumor cell death induced by cytotoxic chemotherapy, blocking angiogenesis and tumor growth. Taken together, our findings suggest that combinatorial inhibition of GSK-3β and CDK1 augment the apoptotic sensitivity of hypoxic tumors, and they offer preclinical validation of a novel and readily translatable strategy to improve cancer therapy.
PMCID: PMC3667402  PMID: 21646472
GSK-3β; CDK1; c-Myc; Hif-1α; c-IAP2; hypoxia; apoptosis; drug screen; drug resistance
11.  Modulation of the anti-cancer efficacy of microtubule-targeting agents by cellular growth conditions 
Cancer biology & therapy  2010;9(10):809-818.
Mitotic spindle-disrupting agents target and alter microtubule dynamics. These agents include clinically important chemotherapies, such as taxanes (paclitaxel [Taxol], docetaxel [Taxotere]) and vinca alkaloids (vincristine [Oncovin], vinblastine). Taxanes are a standard component of treatment for many malignancies, often in conjunction with other cytotoxic agents. However, the optimal sequencing of these treatments and whether efficacy may be influenced by in vitro cellular growth conditions remain incompletely investigated. Yet such preclinical investigations may guide clinical decision making. We therefore studied the effect of cell density on rapid killing by paclitaxel and vincristine. Breast, ovarian and prostate cancer cells were sensitive to rapid killing by either agent when grown at low density, but were markedly resistant when grown at high density, i.e., nearly confluent. The resistance of densely growing cells to rapid killing by these drugs translated to increased clonogenic survival. Pretreatment of densely growing cancer cells with cisplatin followed by paclitaxel, partially reversed the treatment resistance. Gene ontology associations from microarray analyses of cells grown at low and high density, suggested roles for membrane signal transduction and adhesion, but potentially also DNA damage repair and metabolism. Taken together, the treatment resistance at higher cell density may be associated with a lower proportion of active cycling in cells growing at high density as well as transduction of survival signals induced by increased cell-cell adhesion. Collectively these findings suggest mechanisms by which growth conditions may contribute to resistance to rapid killing by microtubule-disrupting drugs.
PMCID: PMC3621729  PMID: 20234172
cellular density; paclitaxel; microtubule-targeting agents; microarray; cell cycle
12.  18F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns 
The Scientific World Journal  2013;2013:796029.
Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional 18F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM) due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. 18F-Fluorothymidine (FLT) in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of 18F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT), and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with 18F-FDG and 18F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67), DNA damage and repair (γH2AX), hypoxia (HIF-1α), and angiogenesis (VEGF). Results. We confirmed that 18F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that 18F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. 18F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.
PMCID: PMC3649687  PMID: 23690748
13.  IL-13Rα2-Targeted Therapy Escapees: Biologic and Therapeutic Implications1 
Translational Oncology  2011;4(6):390-400.
Glioblastoma multiforme (GBM) overexpresses interleukin 13 receptor α2 (IL-13Rα2), a tumor-restricted receptor that is not present in normal brain. We and others have created targeted therapies that specifically eradicate tumors expressing this promising tumor-restricted biomarker. As these therapies head toward clinical implementation, it is critical to explore mechanisms of potential resistance. We therefore used a potent IL-13Rα2-targeted bacterial cytotoxin to select for naturally occurring “escapee” cells from three different IL-13Rα2-expressing GBM cell lines. We found that these side populations of escapee cells had significantly decreased IL-13Rα2 expression. We examined clinically relevant biologic characteristics of escapee cell lines compared to their parental cell lines and found that they had similar proliferation rates and equal sensitivity to temozolomide and radiation, the standard therapies given to GBM patients. In contrast, our escapee cell lines were less likely to form colonies in culture and migrated more slowly in wound healing assays. Furthermore, we found that escapee cells formed significantly less neurospheres in vitro, suggesting that IL-13Rα2-targeted therapy preferentially targeted the “stem-like” cell population and possibly indicating decreased tumorigenicity in vivo. We therefore tested escapee cells for in vivo tumorigenicity and found that they were significantly less tumorigenic in both subcutaneous and intracranial mouse models compared to matching parental cells. These data, for the first time, establish and characterize the clinically relevant biologic properties of IL-13Rα2-targeted therapy escapees and suggest that these cells may have less malignant characteristics than parental tumors.
PMCID: PMC3243662  PMID: 22191003

Results 1-13 (13)