PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Joint effect of insulin signalling genes on cardiovascular events and on whole body and endothelial insulin resistance 
Atherosclerosis  2012;226(1):140-145.
Objective
Insulin resistance (IR) and cardiovascular disease (CVD) share a common soil. We investigated the combined role of single nucleotide polymorphisms (SNPs) affecting insulin signaling (ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; TRIB3 Q84R, rs2295490) on CVD, age at myocardial infarction (MI), in vivo insulin sensitivity and in vitro insulin-stimulated nitric oxide synthase (NOS) activity.
Design and Setting
1. We first studied, incident cardiovascular events (a composite endpoint comprising myocardial infarction -MI-, stroke and cardiovascular death) in 733 patients (2,186 person-years, 175 events). 2. In a replication attempt, age at MI was tested in 331 individuals. 3. OGTT-derived insulin sensitivity index (ISI) was assessed in 829 individuals with fasting glucose < 126 mg/dl. 4. NOS activity was measured in 40 strains of human vein endothelial cells (HUVECs).
Results
1. Risk variants jointly predicted cardiovascular events (HR=1.181; p=0.0009) and, when added to clinical risk factors, significantly improved survival C-statistics; they also allowed a significantly correct reclassification (by net reclassification index) in the whole sample (135/733 individuals) and, even more, in obese patients (116/204 individuals). 2. Risk variants were jointly associated with age at MI (p=0.006). 3. A significant association was also observed with ISI (p=0.02). 4. Finally, risk variants were jointly associated with insulin-stimulated NOS activity in HUVECs (p=0.009).
Conclusions
Insulin signaling genes variants jointly affect cardiovascular disease, very likely by promoting whole body and endothelium-specific insulin resistance. Further studies are needed to address whether their genotyping help identify very high-risk patients who need specific and/or more aggressive preventive strategies.
doi:10.1016/j.atherosclerosis.2012.10.035
PMCID: PMC3529747  PMID: 23107043
genetic susceptibility; non synonymous polymorphism; insulin sensitivity; insulin dependent endothelial function
2.  Genetic prediction of common diseases. Still no help for the clinical diabetologist! 
Genome-wide association studies (GWAS) have identified several loci associated with many common, multifactorial diseases which have been recently used to market genetic testing directly to the consumers. We here addressed the clinical utility of such GWAS-derived genetic information in predicting type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) in diabetic patients. In addition, the development of new statistical approaches, novel technologies of genome sequencing and ethical, legal and social aspects related to genetic testing have been also addressed. Available data clearly show that, similarly to what reported for most common diseases, genetic testing offered today by commercial companies cannot be used as predicting tools for T2DM and CAD, both in the general and in the diabetic population. Further studies taking into account the complex interaction between genes as well as between genetic and non genetic factors, including age, obesity and glycemic control which seem to modify genetic effects on the risk of T2DM and CAD, might mitigate such negative conclusions. Also, addressing the role of relatively rare variants by next-generation sequencing may help identify novel and strong genetic markers with an important role in genetic prediction. Finally, statistical tools concentrated on reclassifying patients might be a useful application of genetic information for predicting many common diseases. By now, prediction of such diseases, including those of interest for the clinical diabetologist, have to be pursued by using traditional clinical markers which perform well and are not costly.
doi:10.1016/j.numecd.2012.04.010
PMCID: PMC3729722  PMID: 22819342
Common; multifactorial disease; Genome-wide association studies; Genetic counseling; Direct-to consumer testing; Ethical; legal; social issues; Diseases prediction models; Next generation sequencing
3.  The role of HSP70 on ENPP1 expression and insulin-receptor activation 
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin-receptor (IR) signaling and, when over-expressed, induces insulin resistance in vitro and in vivo. Understanding the regulation of ENPP1 expression may, thus, unravel new molecular mechanisms of insulin resistance. Recent data point to a pivotal role of the ENPP1 3’UTR, in modulating ENPP1 mRNA stability and expression. We sought to identify trans-acting proteins binding the ENPP1-3’UTR and to investigate their role on ENPP1 expression and on IR signaling. By RNA electrophoresis mobility shift analysis and tandem mass spectrometry, we demonstrated the binding of heat shock protein 70 (HSP70) to ENPP1-3’UTR. Through this binding, HSP70 stabilizes ENPP1 mRNA and increases ENPP1 transcript and protein levels. This positive modulation of ENPP1 expression is paralleled by a reduced insulin-induced IR and IRS-1 phosphorylation. Taken together these data suggest that HSP70, by affecting ENPP1 expression, may be a novel mediator of altered insulin signaling.
doi:10.1007/s00109-008-0429-9
PMCID: PMC3760425  PMID: 19083193
Inhibitors of insulin signaling; Insulin resistance; 3′untranslatedregions; Tyrosine-kinasereceptors
4.  Can existing drugs approved for other indications retard renal function decline in patients with type 1 diabetes and nephropathy? 
Seminars in nephrology  2012;32(5):437-444.
Mounting evidence from human, animal, and in vitro studies indicates that existing drugs, developed to treat other disorders, might also be effective in preventing or slowing the progression of diabetic nephropathy to end stage renal disease. Examples of such drugs include the urate-lowering agent allopurinol, the anti-TNF agents etanercept and infliximab, and the immuno-modulating drug abatacept. Since some these medications are already on the market and have been used for a number of years for other indications, they can be immediately tested in humans for a beneficial effect on renal function in diabetes. Special emphasis should be placed on evaluating the use of these drugs early in the course of diabetic nephropathy when renal damage is most likely to be reversible and interventions can yield the greatest delay to end stage renal disease.
doi:10.1016/j.semnephrol.2012.07.006
PMCID: PMC3474984  PMID: 23062984
diabetic nephropathy; uric acid; inflammation; immune system; novel therapeutics
5.  Association of circulating levels of nicotinamide phosphoribosyltransferase (NAMPT/Visfatin) and of a frequent polymorphism in the promoter of the NAMPT gene with coronary artery disease in diabetic and non-diabetic subjects 
Background
Nicotinamide phosphoribosyltransferase (NAMPT) is the limiting enzyme in one of pathways of synthesis of Nicotinamide Adenine Dinucleotide, a redox coenzyme. NAMPT is considered as an insulin-mimetic factor and a potential regulatory factor in inflammatory and immune processes. Associations of circulating NAMPT levels with cardiovascular disease (CVD) and insulin resistance have been reported. We investigated association of circulating NAMPT levels and the rs9770242 NAMPT gene polymorphism with coronary artery disease (CAD).
Methods
We studied 594 Brazilian subjects undergoing a coronary angiography (49% of whom had type 2 diabetes). CAD, defined as stenosis greater than 50% in one major coronary vessel or branch, was observed in 68% of subjects. Genetic studies were also performed in 858 North-American Non-Hispanic White subjects with type 2 diabetes (49% with CAD).
Results
We observed an interaction between glycemic and CAD status on the comparison of NAMPT levels by CAD status. NAMPT levels were higher in type 2 diabetic patients with CAD as compared to those without CAD: 5.27 ± 2.93 ng/ml vs. 4.43 ± 2.94 ng/ml, p = 0.006 (mean ± SD). NAMPT levels were not significantly different in non-diabetic subjects with or without CAD. The T-allele of rs9770242 was associated with CAD in the Brazilian cohort (OR 1.46, 95% CI 1.06 - 2.01, p = 0.02) while no association was observed in the North-American cohort.
Conclusions
Our data suggest that circulating NAMPT levels are associated with CAD in type 2 diabetic patients. NAMPT rs9770242 polymorphism may be associated with CAD in some populations.
doi:10.1186/1475-2840-12-119
PMCID: PMC3765274  PMID: 23968400
NAMPT; Visfatin; Coronary artery disease; Type 2 diabetes; rs9770242
6.  Ablation of TRIP-Br2, a novel regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance 
Nature medicine  2013;19(2):217-226.
SUMMARY
Obesity develops due to altered energy homeostasis favoring fat storage. Here we describe a novel transcription co-regulator for adiposity and energy metabolism, TRIP-Br2 (also called SERTAD2). TRIP-Br2 null mice are resistant to obesity and obesity-related insulin resistance. Adipocytes of the knockout (KO) mice exhibited greater stimulated lipolysis secondary to enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The KOs also exhibit higher energy expenditure due to increased adipocyte thermogenesis and oxidative metabolism by up-regulating key enzymes in respective processes. Our data show for the first time that a cell cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data together with the observation that TRIP-BR2 expression is selectively elevated in visceral fat in obese humans suggests that this transcriptional co-regulator is a novel therapeutic target for counteracting the development of obesity, insulin resistance and hyperlipidemia.
doi:10.1038/nm.3056
PMCID: PMC3567215  PMID: 23291629
7.  The SH2B1 obesity locus is associated with myocardial infarction in diabetic patients and with NO synthase activity in endothelial cells 
Atherosclerosis  2011;219(2):667-672.
Objective
Obesity and cardiovascular disease recognize a common metabolic soil and may therefore share part of their genetic background. Genome-wide association studies have identified variability at the SH2B1 locus as a predictor of obesity. We investigated whether SNP rs4788102, which captures the entire SH2B1 variability, is associated with coronary artery disease (CAD) and/or myocardial infarction (MI) in patients with type 2 diabetes mellitus (T2DM).
Design and Setting
SNP rs4788102 was typed in 2,015 White subjects with T2DM from three CAD case-control studies [n=740 from the Gargano Hearth Study (GHS, Italy); n=818 from the Joslin Hearth Study (JHS, Boston); n=457 from the University of Catanzaro (CZ, Italy)].
Results
SNP rs4788102 (G/A) was not associated with CAD (overall allelic OR=1.06, 95% CI=0.93-1.21; p=0.37). On the contrary, it was associated with MI in GHS (1.42, 1.12-1.81; p=0.004) and in the three samples analyzed together (1.21, 1.04-1.41; p=0.016). Insulin stimulated nitric oxide synthase (NOS) activity in human vein endothelial cells from G/G (n=4, p=0.03) but not the G/A (n=5, p=0.83) genotype. Of the SNPs in perfect LD with rs4788102, one (rs7498665) affects amino acid polarity (Ala484Thr) and falls into a highly conserved protein segment of SH2B1 containing a class II SH3 domain binding site.
Conclusions
Variability at the SH2B1 obesity locus is associated with MI in diabetic patients and with reduced insulin-stimulated NOS activity in human endothelial cells. Further studies are needed to replicate this association and dissect the biology underlying this finding.
doi:10.1016/j.atherosclerosis.2011.08.019
PMCID: PMC3728428  PMID: 21907990
8.  Serum Resistin, Cardiovascular Disease and All-Cause Mortality in Patients with Type 2 Diabetes 
PLoS ONE  2013;8(6):e64729.
Background
High serum resistin has been associated with increased risk of cardiovascular disease in the general population, Only sparse and conflicting results, limited to Asian individuals, have been reported, so far, in type 2 diabetes. We studied the role of serum resistin on coronary artery disease, major cardiovascular events and all-cause mortality in type 2 diabetes.
Methods
We tested the association of circulating resistin concentrations with coronary artery disease, major cardiovascular events (cardiovascular death, non-fatal myocardial infarction and non-fatal stroke) and all-cause mortality in 2,313 diabetic patients of European ancestry from two cross-sectional and two prospective studies. In addition, the expression of resistin gene (RETN) was measured in blood cells of 68 diabetic patients and correlated with their serum resistin levels.
Results
In a model comprising age, sex, smoking habits, BMI, HbA1c, and insulin, antihypertensive and antidyslipidemic therapies, serum resistin was associated with coronary artery disease in both cross-sectional studies: OR (95%CI) per SD increment = 1.35 (1.10–1.64) and 1.99 (1.55–2.55). Additionally, serum resistin predicted incident major cardiovascular events (HR per SD increment = 1.31; 1.10–1.56) and all-cause mortality (HR per SD increment = 1.16; 1.06–1.26). Adjusting also for fibrinogen levels affected the association with coronary artery disease and incident cardiovascular events, but not that with all cause-mortality. Finally, serum resistin was positively correlated with RETN mRNA expression (rho = 0.343).
Conclusions
This is the first study showing that high serum resistin (a likely consequence, at least partly, of increased RETN expression) is a risk factor for cardiovascular disease and all-cause mortality in diabetic patients of European ancestry.
doi:10.1371/journal.pone.0064729
PMCID: PMC3670852  PMID: 23755138
9.  Genetic Predisposition to Dyslipidemia and Type 2 Diabetes Risk in Two Prospective Cohorts 
Diabetes  2012;61(3):745-752.
Dyslipidemia has been associated with type 2 diabetes, but it remains unclear whether dyslipidemia plays a causal role in type 2 diabetes. We aimed to examine the association between the genetic predisposition to dyslipdemia and type 2 diabetes risk. The current study included 2,447 patients with type 2 diabetes and 3,052 control participants of European ancestry from the Nurses’ Health Study and the Health Professionals Follow-up Study. Genetic predisposition to dyslipidemia was estimated by three genotype scores of lipids (LDL cholesterol, HDL cholesterol, and triglycerides) on the basis of the established loci for blood lipids. Linear relation analysis indicated that the HDL cholesterol and triglyceride genotype scores, but not the LDL cholesterol genotype score, were linearly related to elevated type 2 diabetes risk. Each point of the HDL cholesterol and triglyceride genotype scores was associated with a 3% (odds ratio [OR] 1.03 [95% CI 1.01–1.04]) and a 2% (1.02 [1.00–1.04]) increased risk of developing type 2 diabetes, respectively. The ORs were 1.39 (1.17–1.65) and 1.19 (1.01–1.41) for type 2 diabetes by comparing extreme quartiles of the HDL cholesterol genotype score and triglyceride genotype score, respectively. In conclusion, genetic predisposition to low HDL cholesterol or high triglycerides is related to elevated type 2 diabetes risk.
doi:10.2337/db11-1254
PMCID: PMC3282815  PMID: 22315312
10.  Genetic Susceptibility to Coronary Heart Disease in Type 2 Diabetes: Three Independent Studies 
Objective
To evaluate whether coronary heart disease (CHD)-susceptibility loci identified by genome-wide association studies of the general population also contribute to CHD in type 2 diabetes.
Background
No study has examined the effects of these genetic variants on CHD in diabetic patients.
Methods
We genotyped 15 genetic markers of 12 loci in three studies of diabetic patients: the prospective Nurses’ Health Study (309 CHD cases and 544 controls) and Health Professional Follow-up Study (345 CHD cases and 451 controls), and the cross-sectional Joslin Heart Study (422 CHD cases and 435 controls).
Results
Five SNPs, rs4977574 (CDKN2A/2B), rs12526453 (PHACTR1), rs646776 (CELSR2-PSRC1-SORT1), rs2259816 (HNF1A), and rs11206510 (PCSK9) showed directionally consistent associations with CHD in the three studies, with combined odds ratios (ORs) ranging from 1.17 to 1.25 (p=0.03 to 0.0002). None of the other SNPs reached significance in individual or combined analyses. A genetic risk score (GRS) was created by combining the risk alleles of the five significantly associated loci. The OR of CHD per GRS unit was 1.19 (95% confidence interval [CI] 1.13– 1.26; p<0.0001). Individuals with GRS ≥8 (19% of diabetic subjects) had almost a two-fold increase in CHD risk (OR=1.94, 95% CI 1.60–2.35) as compared to individuals with GRS ≤5 (30% of diabetic subjects). Prediction of CHD was significantly improved (p<0.001) when the GRS was added to a model including clinical predictors in the combined samples.
Conclusions
Our results illustrate the consistency and differences in the determinants of genetic susceptibility to CHD in diabetic patients and the general populations.
doi:10.1016/j.jacc.2011.08.054
PMCID: PMC3240896  PMID: 22152955
genetics; CHD; diabetes
11.  Serum Resistin and Kidney Function: A Family-Based Study in Non-Diabetic, Untreated Individuals 
PLoS ONE  2012;7(6):e38414.
Background
High serum resistin levels have been associated with kidney dysfunction. Most of these studies have been carried out in individuals with severe kidney impairment, diabetes, cardiovascular disease and related treatments. Thus, the observed association might have been influenced by these confounders. Our aim was to study the relationship between serum resistin, urinary albumin/creatinine ratio (ACR) and glomerular filtration rate (GFR) in a family-based sample, the Gargano Family Study (GFS) of 635 non diabetic, untreated Whites.
Methods
A linear mixed effects model and bivariate analyses were used to evaluate the phenotypic and genetic relations between serum resistin and both ACR and eGFR. All analyses were adjusted for sex, age, age squared, BMI, systolic blood pressure, smoking habits and physical exercise.
Results
After adjustments, resistin levels were slightly positively associated with ACR (β±SE = 0.049±0.023, p = 0.035) and inversely related to eGFR (β±SE = −1.43±0.61, p = 0.018) levels. These associations remained significant when either eGFR or ACR were, reciprocally, added as covariates. A genetic correlation (ρg = −0.31±0.12; adjusted p = 0.013) was observed between resistin and eGFR (but not ACR) levels.
Conclusion
Serum resistin levels are independently associated with ACR and eGFR in untreated non-diabetic individuals. Serum resistin and eGFR share also some common genetic background. Our data strongly suggest that resistin plays a role in modulating kidney function.
doi:10.1371/journal.pone.0038414
PMCID: PMC3373540  PMID: 22701635
12.  The Type 2 Diabetes and Insulin-Resistance Locus Near IRS1 Is A Determinant of HDL Cholesterol and Triglycerides Levels Among Diabetic Subjects 
Atherosclerosis  2011;216(1):157-160.
OBJECTIVE
SNP rs2943641 near the insulin receptor substrate 1 (IRS1) gene has been found to be associated with type 2 diabetes (T2D) and insulin-resistance in genome-wide association studies. We investigated whether this SNP is associated with cardiovascular risk factors and coronary artery disease (CAD) among diabetic individuals.
METHODS
SNP rs2943641 was typed in 2,133 White T2D subjects and tested for association with BMI, serum HDL cholesterol and triglycerides, hypertension history, and CAD risk.
RESULTS
HDL cholesterol decreased by 1 mg/dl (p=0.0045) and serum triglycerides increased by 6 mg/dl (p=0.018) for each copy of the insulin-resistance allele. Despite these effects, no association was found with increased CAD risk (OR=1.00, 95% CI 0.88–1.13).
CONCLUSIONS
The insulin-resistance and T2D locus near the IRS1 gene is a determinant of lower HDL cholesterol among T2D subjects. However, this effect is small and does not translate into a detectable increase in CAD risk in this population.
doi:10.1016/j.atherosclerosis.2011.01.022
PMCID: PMC3089704  PMID: 21353221
coronary artery disease; polymorphisms; insulin-resistance; type 2 diabetes
13.  Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration 
Diabetes Care  2011;34(4):968-974.
OBJECTIVE
To assess complication prevalence and identify protective factors in patients with diabetes duration of ≥50 years. Characterization of a complication-free subgroup in this cohort would suggest that some individuals are protected from diabetes complications and allow identification of endogenous protective factors.
RESEARCH DESIGN AND METHODS
Cross-sectional, observational study of 351 U.S. residents who have survived with type 1 diabetes for ≥50 years (Medalists). Retinopathy, nephropathy, neuropathy, and cardiovascular disease were assessed in relation to HbA1c, lipids, and advanced glycation end products (AGEs). Retrospective chart review provided longitudinal ophthalmic data for a subgroup.
RESULTS
A high proportion of Medalists remain free from proliferative diabetic retinopathy (PDR) (42.6%), nephropathy (86.9%), neuropathy (39.4%), or cardiovascular disease (51.5%). Current and longitudinal (the past 15 years) glycemic control were unrelated to complications. Subjects with high plasma carboxyethyl-lysine and pentosidine were 7.2-fold more likely to have any complication. Of Medalists without PDR, 96% with no retinopathy progression over the first 17 years of follow-up did not experience retinopathy worsening thereafter.
CONCLUSIONS
The Medalist population is likely enriched for protective factors against complications. These factors might prove useful to the general population with diabetes if they can be used to induce protection against long-term complications. Specific AGE combinations were strongly associated with complications, indicating a link between AGE formation or processing with development of diabetic vasculopathy.
doi:10.2337/dc10-1675
PMCID: PMC3064059  PMID: 21447665
14.  The ENPP1 Q121 Variant Predicts Major Cardiovascular Events in High-Risk Individuals 
Diabetes  2011;60(3):1000-1007.
OBJECTIVE
Insulin resistance (IR) and cardiovascular disease may share a common genetic background. We investigated the role of IR-associated ENPP1 K121Q polymorphism (rs1044498) on cardiovascular disease in high-risk individuals.
RESEARCH DESIGN AND METHODS
A prospective study (average follow-up, 37 months) was conducted for major cardiovascular events (myocardial infarction [MI], stroke, cardiovascular death) from the Gargano Heart Study (GHS; n = 330 with type 2 diabetes and coronary artery disease), the Tor Vergata Atherosclerosis Study (TVAS; n = 141 who had MI), and the Cardiovascular Risk Extended Evaluation in Dialysis (CREED) database (n = 266 with end-stage renal disease). Age at MI was investigated in cross-sectional studies of 339 type 2 diabetic patients (n = 169 from Italy, n = 170 from the U.S.).
RESULTS
Incidence of cardiovascular events per 100 person--years was 4.2 in GHS, 10.8 in TVAS, and 11.7 in CREED. Hazard ratios (HRs) for KQ+QQ versus individuals carrying the K121/K121 genotype (KK) individuals were 1.47 (95% CI 0.80–2.70) in GHS, 2.31 (95% CI 1.22–4.34) in TVAS, and 1.36 (95% CI 0.88–2.10) in CREED, and 1.56 (95% CI 1.15–2.12) in the three cohorts combined. In the 395 diabetic patients, the Q121 variant predicted cardiovascular events among obese but not among nonobese individuals (HR 5.94 vs. 0.62, P = 0.003 for interaction). A similar synergism was observed in cross-sectional studies, with age at MI being 3 years younger in Q121 carriers than in KK homozygotes among obese but not among nonobese patients (P = 0.035 for interaction).
CONCLUSIONS
The ENPP1 K121Q polymorphism is an independent predictor of major cardiovascular events in high-risk individuals. In type 2 diabetes, this effect is exacerbated by obesity. Future larger studies are needed to confirm our finding.
doi:10.2337/db10-1300
PMCID: PMC3046818  PMID: 21282363
15.  Residual Insulin Production and Pancreatic β-Cell Turnover After 50 Years of Diabetes: Joslin Medalist Study 
Diabetes  2010;59(11):2846-2853.
OBJECTIVE
To evaluate the extent of pancreatic β-cell function in a large number of insulin-dependent diabetic patients with a disease duration of 50 years or longer (Medalists).
RESEARCH DESIGN AND METHODS
Characterization of clinical and biochemical parameters and β-cell function of 411 Medalists with correlation with postmortem morphologic findings of 9 Medalists.
RESULTS
The Medalist cohort, with a mean ± SD disease duration and age of 56.2 ± 5.8 and 67.2 ± 7.5 years, respectively, has a clinical phenotype similar to type 1 diabetes (type 1 diabetes): mean ± SD onset at 11.0 ± 6.4 years, BMI at 26.0 ± 5.1 kg/m2, insulin dose of 0.46 ± 0.2 u/kg, ∼94% positive for DR3 and/or DR4, and 29.5% positive for either IA2 or glutamic acid decarboxylase (GAD) autoantibodies. Random serum C-peptide levels showed that more than 67.4% of the participants had levels in the minimal (0.03–0.2 nmol/l) or sustained range (≥0.2 nmol/l). Parameters associated with higher random C-peptide were lower hemoglobin A1C, older age of onset, higher frequency of HLA DR3 genotype, and responsiveness to a mixed-meal tolerance test (MMTT). Over half of the Medalists with fasting C-peptide >0.17 nmol/l responded in MMTT by a twofold or greater rise over the course of the test compared to fasting. Postmortem examination of pancreases from nine Medalists showed that all had insulin+ β-cells with some positive for TUNEL staining, indicating apoptosis.
CONCLUSIONS
Demonstration of persistence and function of insulin-producing pancreatic cells suggests the possibility of a steady state of turnover in which stimuli to enhance endogenous β cells could be a viable therapeutic approach in a significant number of patients with type 1 diabetes, even for those with chronic duration.
doi:10.2337/db10-0676
PMCID: PMC2963543  PMID: 20699420
16.  High-Normal Serum Uric Acid Increases Risk of Early Progressive Renal Function Loss in Type 1 Diabetes 
Diabetes Care  2010;33(6):1337-1343.
OBJECTIVE
We previously described a cross-sectional association between serum uric acid and reduced glomerular filtration rate (GFR) in nonproteinuric patients with type 1 diabetes. Here, we prospectively investigated whether baseline uric acid impacts the risk of early progressive renal function loss (early GFR loss) in these patients.
RESEARCH DESIGN AND METHODS
Patients with elevated urinary albumin excretion (n = 355) were followed for 4–6 years for changes in urinary albumin excretion and GFR. The changes were estimated by multiple determinations of albumin-to-creatinine ratios (ACRs) and serum cystatin C (GFRcystatin).
RESULTS
At baseline, the medians (25th–75th percentiles) for uric acid, ACR, and GFRcystatin values were 4.6 mg/dl (3.8–5.4), 26.2 mg/g (15.1–56.0), and 129 ml/min per 1.73 m2 (111–145), respectively. During the 6-year follow-up, significant association (P < 0.0002) was observed between serum uric acid and development of early GFR loss, defined as GFRcystatin decline exceeding 3.3% per year. In baseline uric acid concentration categories (in mg/dl: <3.0, 3.0–3.9, 4.0–4.9, 5.0–5.9, and ≥6), the risk of early GFR loss increased linearly (9, 13, 20, 29, and 36%, respectively). This linear increase corresponds to odds ratio 1.4 (95% CI 1.1–1.8) per 1 mg/dl increase of uric acid. The progression and regression of urinary albumin excretion were not associated with uric acid.
CONCLUSIONS
We found a clear dose-response relation between serum uric acid and risk of early GFR loss in patients with type 1 diabetes. Clinical trials are warranted to determine whether uric acid–lowering drugs can halt renal function decline before it becomes clinically significant.
doi:10.2337/dc10-0227
PMCID: PMC2875450  PMID: 20332356
17.  Circulating HMW adiponectin isoform is heritable and shares a common genetic background with insulin resistance in non diabetic White Caucasians from Italy: evidence from a family-based study 
Journal of internal medicine  2009;267(3):287-294.
Objective
Reduced circulating adiponectin levels contribute to the etiology of insulin-resistance. Adiponectin circulates in three different isoforms: high (HMW), medium (MMW), and low (LMW) molecular weight. The genetics of adiponectin isoforms is mostly unknown. Our aim was to investigate whether and to which extent circulating adiponectin isoforms are heritable and whether they share common genetic backgrounds with insulin resistance-related traits.
Methods
In a family based sample of 640 non diabetic White Caucasians from Italy, serum adiponectin isoforms concentrations were measured by ELISA. Three SNPs in the ADIPOQ gene previously reported to affect total adiponectin levels (rs17300539, rs1501299 and rs677395) were genotyped. The heritability of adiponectin isoform levels was assessed by variance component analysis. A linear mixed effects model was used to test association between SNPs and adiponectin isoforms. Bivariate analyses were conducted to study genetic correlations between adiponectin isoforms levels and other insulin resistance-related traits.
Results
All isoforms were highly heritable (h2=0.60−0.80, p=1×10−13–1×10−23). SNPs rs17300539, rs1501299 and rs6773957 explained a significant proportion of HMW variance (2–9%, p=1×10−3–1×10−5). In a multiple-SNP model, only rs17300539 and rs1501299 remained associated with HMW adiponectin (p=3×10−4 and 2.0×10−2). Significant genetic correlations (p=1×10−2–1×10−5) were observed between HMW adiponectin and fasting insulin, HOMAIR, HDL-cholesterol and the metabolic syndrome score. Only rs1501299 partly accounted for these genetic correlations.
Conclusion
Circulating levels of adiponectin isoforms are highly heritable. The genetic control of HMW adiponectin is shared in part with insulin resistance-related traits and involves, but is not limited to the ADIPOQ locus.
doi:10.1111/j.1365-2796.2009.02141.x
PMCID: PMC2833228  PMID: 19761474
ADIPOQ gene; Adiponectin isoforms; insulin resistance
18.  Genetics of Diabetes Complications 
Current diabetes reports  2010;10(6):467-475.
A large body of evidence indicates that the risk of developing chronic diabetic complications is under the control of genetic factors. Previous studies using a candidate gene approach have uncovered a number of genetic loci that may shape this risk, such as the VEGF gene for retinopathy, the ELMO1 gene for nephropathy, and the ADIPOQ gene for coronary artery disease. Recently, a new window has opened on identifying these genes through genome-wide association studies. Such systematic approach has already led to the identification of a major locus for coronary artery disease on 9p21 as well three potential genes for nephropathy on 7p, 11p, and 13q. Further insights are expected from a broader application of this strategy. It is anticipated that the identification of these genes will provide novel insights on the etiology of diabetic complications, with crucial implications for the development of new drugs to prevent the adverse effects of diabetes.
doi:10.1007/s11892-010-0147-x
PMCID: PMC2956847  PMID: 20835900
Diabetic nephropathy; Diabetic retinopathy; Coronary artery disease; Atherosclerosis; Polymorphisms; Candidate genes; Genome-wide association studies
20.  The Q121 Variant of ENPP1 Gene is Associated with Decreased Kidney Function Among Patients With Type 2 Diabetes 
Background
Insulin resistance plays a role in diabetic kidney complications. The ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1) (rs1044498) K121Q polymorphism has been associated with insulin resistance and related vascular complications among patients with type 2 diabetes (T2D), in many although not all studies. This study investigated whether the ENPP1 Q121 variant modulates the risk of reduced GFR in T2D.
Study design
Cross-sectional study.
Setting & Participants
Two Diabetes Units from Italy (Gargano e Padua) and one from the US (Boston) recruited a total of 1392 patients with T2D.
Predictors
The ENPP1 Q121 variant.
Measurements
Estimated glomerular filtration rate (eGFR) from serum creatinine, urinary albumin excretion, blood pressure, HbA1c, Triglycerides, Total cholesterol, HDL-Cholesterol
Outcomes
Reduced GFR levels (i.e. eGFR <60 ml/min/1.73m2).
Results
In the Gargano and Boston populations, according to dominant model of inheritance, Q121 carriers (i.e. individual with either KQ or QQ genotype) had an increased risk of reduced GFR: ORs=1.69 (95%CI 1.1–2.6) and 1.50 (95%CI 1.0–2.2), respectively. In the Padua set the association was in the same direction but didn’t reach a formal statistical significance (OR=1.77, 95%CI 0.7–4.5). When the three studies were pooled, Q121 carriers showed and increased risk of reduced GFR (OR=1.58, 95%CI 1.2–2.1, p=0.002). Also pooled mean differences of absolute GFR values were different across genotype groups with Q121 carriers showing lower GFR, as compared to KK individuals (p=0.04).
Limitations
p values not approaching a genome-wide level of significance.
Conclusions
Our data suggest that patients with T2D carrying the ENPP1 Q121 variant are at increased risk of reduced GFR.
doi:10.1053/j.ajkd.2008.07.040
PMCID: PMC2939986  PMID: 18950909
gene polymorphism; insulin resistance; vascular diabetic complications; PC-1
21.  Genome-Wide Association Scan for Diabetic Nephropathy Susceptibility Genes in Type 1 Diabetes 
Diabetes  2009;58(6):1403-1410.
OBJECTIVE
Despite extensive evidence for genetic susceptibility to diabetic nephropathy, the identification of susceptibility genes and their variants has had limited success. To search for genes that contribute to diabetic nephropathy, a genome-wide association scan was implemented on the Genetics of Kidneys in Diabetes collection.
RESEARCH DESIGN AND METHODS
We genotyped ∼360,000 single nucleotide polymorphisms (SNPs) in 820 case subjects (284 with proteinuria and 536 with end-stage renal disease) and 885 control subjects with type 1 diabetes. Confirmation of implicated SNPs was sought in 1,304 participants of the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, a long-term, prospective investigation of the development of diabetes-associated complications.
RESULTS
A total of 13 SNPs located in four genomic loci were associated with diabetic nephropathy with P < 1 × 10−5. The strongest association was at the FRMD3 (4.1 protein ezrin, radixin, moesin [FERM] domain containing 3) locus (odds ratio [OR] = 1.45, P = 5.0 × 10−7). A strong association was also identified at the CARS (cysteinyl-tRNA synthetase) locus (OR = 1.36, P = 3.1 × 10−6). Associations between both loci and time to onset of diabetic nephropathy were supported in the DCCT/EDIC study (hazard ratio [HR] = 1.33, P = 0.02, and HR = 1.32, P = 0.01, respectively). We demonstratedexpression of both FRMD3 and CARS in human kidney.
CONCLUSIONS
We identified genetic associations for susceptibility to diabetic nephropathy at two novel candidate loci near the FRMD3 and CARS genes. Their identification implicates previously unsuspected pathways in the pathogenesis of this important late complication of type 1 diabetes.
doi:10.2337/db08-1514
PMCID: PMC2682673  PMID: 19252134
22.  Identification and Importance of Brown Adipose Tissue in Adult Humans 
The New England journal of medicine  2009;360(15):1509-1517.
BACKGROUND
Obesity results from an imbalance between energy intake and expenditure. In rodents and newborn humans, brown adipose tissue helps regulate energy expenditure by thermogenesis mediated by the expression of uncoupling protein 1 (UCP1), but brown adipose tissue has been considered to have no physiologic relevance in adult humans.
METHODS
We analyzed 3640 consecutive 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomographic and computed tomographic (PET–CT) scans performed for various diagnostic reasons in 1972 patients for the presence of substantial depots of putative brown adipose tissue. Such depots were defined as collections of tissue that were more than 4 mm in diameter, had the density of adipose tissue according to CT, and had maximal standardized uptake values of 18F-FDG of at least 2.0 g per milliliter, indicating high metabolic activity. Clinical indexes were recorded and compared with those of date-matched controls. Immunostaining for UCP1 was performed on biopsy specimens from the neck and supraclavicular regions in patients undergoing surgery.
RESULTS
Substantial depots of brown adipose tissue were identified by PET–CT in a region extending from the anterior neck to the thorax. Tissue from this region had UCP1-immunopositive, multilocular adipocytes indicating brown adipose tissue. Positive scans were seen in 76 of 1013 women (7.5%) and 30 of 959 men (3.1%), corresponding to a female:male ratio greater than 2:1 (P<0.001). Women also had a greater mass of brown adipose tissue and higher 18F-FDG uptake activity. The probability of the detection of brown adipose tissue was inversely correlated with years of age (P<0.001), outdoor temperature at the time of the scan (P= 0.02), beta-blocker use (P<0.001), and among older patients, body-mass index (P = 0.007).
CONCLUSIONS
Defined regions of functionally active brown adipose tissue are present in adult humans, are more frequent in women than in men, and may be quantified noninvasively with the use of 18F-FDG PET–CT. Most important, the amount of brown adipose tissue is inversely correlated with body-mass index, especially in older people, suggesting a potential role of brown adipose tissue in adult human metabolism.
doi:10.1056/NEJMoa0810780
PMCID: PMC2859951  PMID: 19357406
23.  Deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice 
Nature medicine  2009;15(8):940-945.
Although mast cell functions classically relate to allergic responses1–3, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm, and cancer4–8. This study presents evidence that mast cells contribute importantly to diet-induced obesity and diabetes. White adipose tissues (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Genetically determined mast cell deficiency and pharmacological stabilization of mast cells in mice reduce body weight gain and levels of inflammatory cytokines, chemokines, and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer of cytokine-deficient mast cells established that these cells contribute to mice adipose tissue cysteine protease cathepsin expression, apoptosis, and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance by production of IL6 and IFN-γ. Mast cell stabilizing agents in clinical use reduced obesity and diabetes in mice, suggesting the potential of developing novel therapies for these common human metabolic disorders.
doi:10.1038/nm.1994
PMCID: PMC2736875  PMID: 19633655
24.  Interaction Between Poor Glycemic Control and 9p21 Locus on Risk of Coronary Artery Disease in Type 2 Diabetes 
Context
A common allele on chromosome 9p21 has been repeatedly associated with increased risk of coronary artery disease (CAD) in the general population. However, the magnitude of this effect in the population with diabetes has not been well characterized.
Objective
To examine the association of the 9p21 variant with CAD in individuals with type 2 diabetes and evaluate its interaction with poor glycemic control.
Design, Setting, and Participants
1. Case-control study of 734 type 2 diabetic patients (322 with angiographically-diagnosed CAD and 412 with no evidence of CAD) who were recruited in 2001–2006 at the Joslin Clinic/Beth Israel Deaconess Medical Center, 2. Independent cohort study of 475 type 2 diabetic patients from the Joslin Clinic whose survival status was monitored from their recruitment in 1993–1996 until December 31, 2004. Study subjects were genotyped for a representative SNP at 9p21 (rs2383206) and characterized for their long-term glycemic control by averaging multiple hemoglobin A1c (HbA1c) measurements taken in the years before study entry.
Main Outcome Measures
Case-control study: association between SNP rs2383206 and CAD defined as angiographically documented stenosis greater than 50% in a major coronary artery or a main branch thereof. Cohort study: cumulative 10-year mortality.
Results
Individuals homozygous for the risk allele were significantly more frequent in case than control subjects (42.3 vs. 28.9%, p=0.0002). This association was unaffected by adjustment for cardiovascular risk factors, but the effect of the risk genotype was significantly magnified (adjusted p for interaction = 0.048) in the presence of poor glycemic control (worst tertile of the distribution of HbA1c at examination). Relative to the CAD risk for patients with neither a 9p21 risk allele nor poor glycemic control, the CAD risk for subjects having two risk alleles but not poor glycemic control was increased two-fold (OR=1.99, 1.17–3.41), whereas the risk for study subjects with the same genotype and with poor glycemic control was increased four-fold (OR=4.27, 2.26–8.01). The interaction was stronger (adjusted p=0.005) when a measure of long-term glycemic control (7-year average rather than most recent HbA1c) was used, with ORs of 7.83 (3.49–17.6) for subjects having two risk alleles and a history of poor glycemia and 1.54 (0.72–3.30) for subjects with the same genotype but without this exposure. A similar interaction between 9p21 variant and poor glycemic control was observed with respect to cumulative 10-year mortality in the cohort study (43.6% in patients with two risk alleles and poor glycemic control, 23.1% in those with only the two risk alleles, 30.0% in those with only poor glycemic control, and 31.6% in those with neither factor, p for interaction=0.036).
Conclusions
In this study population, the CAD risk associated with the 9p21 variant was increased in the presence of poor glycemic control in type 2 diabetes.
doi:10.1001/jama.2008.649
PMCID: PMC2762126  PMID: 19033589
25.  Mutations in the SLC30A8 gene are not a major cause of MODY or other forms of early-onset, autosomal dominant type 2 diabetes 
Diabetologia  2007;50(10):2224-2226.
doi:10.1007/s00125-007-0777-y
PMCID: PMC2755551  PMID: 17657472
Genetics; Maturity onset diabetes of the young (MODY); Type 2 diabetes

Results 1-25 (31)