Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Dong, zheng")
1.  EIF3i Promotes Colon Oncogenesis by Regulating COX-2 Protein Synthesis and β-Catenin Activation 
Oncogene  2013;33(32):4156-4163.
Translational control of gene expression has recently been recognized as an important mechanism controlling cell proliferation and oncogenesis and it mainly occurs in the initiation step of protein synthesis that involves multiple eukaryotic initiation factors (eIFs). Many eIFs have been found to have aberrant expression in human tumors and the aberrant expression may contribute to oncogenesis. However, how these previously considered house-keeping proteins are potentially oncogenic remains elusive. In this study, we investigated the expression of eIF3i in human colon cancers, tested its contribution to colon oncogenesis, and determined the mechanism of eIF3i action in colon oncogenesis. We found that eIF3i expression was up-regulated in both human colon adenocarcinoma and adenoma polyps as well as in model inducible colon tumorigenic cell lines. Over-expression of ectopic eIF3i in intestinal epithelial cells causes oncogenesis by directly up-regulating synthesis of COX-2 protein and activates the β-catenin/TCF4 signaling pathway that mediates the oncogenic function of eIF3i. Together, we conclude that eIF3i is a proto-oncogene that drives colon oncogenesis by translationally up-regulating COX-2 and activating β-catenin signaling pathway. These findings imply that protooncogenic eIFs likely exert their tumorigenic function by regulating/altering the synthesis level of down-stream tumor suppressor or oncogenes.
PMCID: PMC3962800  PMID: 24056964
eIF3i; COX-2; β-catenin; translational control; colon cancer; RNA-binding
2.  Over-expression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells 
Molecular cancer therapeutics  2013;12(10):2157-2166.
Platinum-based concurrent chemo-radiotherapy is considered a standard treatment approach for locoregionally advanced nasopharyngeal carcinoma (NPC). However, only a minority of patients benefit from this treatment regimen compared to radiotherapy alone. Identification of a set of molecular markers predicting sensitivity of platinum-based chemotherapy may contribute to personalized treatment of NPC patients for better clinical outcome with less toxicity. Previously, we generated a cisplain sensitive NPC cell line, S16, by clonal selection from CNE-2 cells and found that eIF3a is up-regulated and contributes to cisplatin sensitivity by down-regulating the synthesis of NER proteins. In this study, we conducted a gene expression profiling analysis and found three other genes, asparagine synthetase (ASNS), choriogonadotropin α subunit (CGA), and matrix metalloproteinase 19 (MMP19), that are up-regulated in the cisplatin-sensitive S16 cells compared with the CNE-2 cells. However, only ASNS and MMP19, but not CGA, contributes to cisplatin sensitivity by potentiating cisplatin-induced DNA damage and apoptosis. Thus, ASNS and MMP19, along with eIF3a, are sensitivity factors for cisplatin treatment and may serve as potential candidate molecular markers for predicting cisplatin sensitivity of advanced nasopharyngeal carcinoma.
PMCID: PMC3795908  PMID: 23956056
3.  Role of eIF3a in regulating cisplatin sensitivity and nucleotide excision repair of nasopharyngeal carcinomas 
Oncogene  2011;30(48):4814-4823.
Translational control at the initiation step has been recognized as a major and important regulatory mechanism of gene expression. eIF3a, a putative subunit of eIF3 complex, has recently been shown to play an important role in regulating translation of a subset of mRNAs and found to correlate with prognosis of cancers. In this study, using nasopharyngeal carcinoma (NPC) cells as a model system we tested the hypothesis that eIF3a negatively regulates synthesis of nucleotide excision repair (NER) proteins and, thus, NER activities and cellular response to treatments with DNA damaging agents such as cisplatin. We found that a cisplatin-sensitive subclone S16 isolated from a NPC cell line CNE2 via limited dilution has increased eIF3a expression. Knocking down its expression in S16 cells increased cellular resistance to cisplatin, NER activity, and synthesis of NER proteins XPA, XPC, RAD23B, and RPA32. Altering eIF3a expression also changed cellular response to cisplatin and UV treatment in other NPC cell lines. Taken together, we conclude that eIF3a plays an important role in cisplatin response and NER activity of nasopharyngeal carcinomas by suppressing synthesis of NER proteins.
PMCID: PMC3165083  PMID: 21625209
cisplatin sensitivity; eIF3a; nasopharyngeal carcinoma; nucleotide excision repair; translational control
4.  Dynamic vs Static ABCG2 Inhibitors to Sensitize Drug Resistant Cancer Cells 
PLoS ONE  2010;5(12):e15276.
Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in multidrug resistance and protecting cancer stem cells. ABCG2-knockout had no apparent adverse effect on the development, biochemistry, and life of mice. Thus, ABCG2 is an interesting and promising target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and for eliminating cancer stem cells. Previously, we reported a novel two mode-acting ABCG2 inhibitor, PZ-39, that induces ABCG2 degradation in addition to inhibiting its activity. In this manuscript, we report our recent progresses in identifying two different groups of ABCG2 inhibitors with one inhibiting only ABCG2 function (static) and the other induces ABCG2 degradation in lysosome in addition to inhibiting its function (dynamic). Thus, the inhibitor-induced ABCG2 degradation may be more common than we previously anticipated and further investigation of the dynamic inhibitors that induce ABCG2 degradation may provide a more effective way of sensitizing ABCG2-mediated MDR in cancer chemotherapy.
PMCID: PMC2998423  PMID: 21151870
5.  Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers 
BMC Cancer  2010;10:598.
Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis.
Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays.
We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest.
The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients.
PMCID: PMC2991307  PMID: 21040574
6.  A Novel Two Mode-Acting Inhibitor of ABCG2-Mediated Multidrug Transport and Resistance in Cancer Chemotherapy 
PLoS ONE  2009;4(5):e5676.
Multidrug resistance (MDR) is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells.
Methods/Preliminary Findings
Using rational screening of representatives from a chemical compound library, we found a novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-yl)sulfanyl]acetamide), that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression, indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39 is benzothiazole linked to a triazine ring backbone.
Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics targeting ABCG2-mediated MDR in combinational cancer chemotherapy.
PMCID: PMC2682573  PMID: 19479068
7.  Regulation of expression by promoters versus internal ribosome entry site in the 5′-untranslated sequence of the human cyclin-dependent kinase inhibitor p27kip1 
Nucleic Acids Research  2005;33(12):3763-3771.
p27kip1 regulates cell proliferation by binding to and inhibiting the activity of cyclin-dependent kinases and its expression oscillates with cell cycle. Recently, it has been suggested from studies using the traditional dicistronic DNA assay that the expression of p27kip1 is regulated by internal ribosome entry site (IRES)-mediated translation initiation, and several RNA-binding protein factors were thought to play some role in this regulation. Considering the inevitable drawbacks of the dicistronic DNA assay, which could mislead a promoter activity or alternative splicing to IRES as previously demonstrated, we decided to reanalyze the 5′-untranslated region (5′-UTR) sequence of p27kip1 and test whether it contains an IRES element or a promoter using more stringent methods, such as dicistronic RNA and promoterless dicistronic and monocistronic DNA assays. We found that the 5′-UTR sequence of human p27kip1 does not have any significant IRES activity. The previously observed IRES activities are likely generated from the promoter activities present in the 5′-UTR sequences of p27kip1. The findings in this study indicate that transcriptional regulation likely plays an important role in p27kip1 expression, and the mechanism of regulation of p27 expression by RNA-binding factors needs to be re-examined. The findings in this study also further enforce the importance that more stringent studies, such as promoterless dicistronic and monocistronic DNA and dicistronic RNA tests, are required to safeguard any future claims of cellular IRES.
PMCID: PMC1174905  PMID: 16006622
8.  Regulation of ribonucleotide reductase M2 expression by the upstream AUGs 
Nucleic Acids Research  2005;33(8):2715-2725.
Ribonucleotide reductase catalyzes a rate-limiting reaction in DNA synthesis by converting ribonucleotides to deoxyribonucleotides. It consists of two subunits and the small one, M2 (or R2), plays an essential role in regulating the enzyme activity and its expression is finely controlled. Changes in the M2 level influence the dNTP pool and, thus, DNA synthesis and cell proliferation. M2 gene has two promoters which produce two major mRNAs with 5′-untranslated regions (5′-UTRs) of different lengths. In this study, we found that the M2 mRNAs with the short (63 nt) 5′-UTR can be translated with high efficiency whereas the mRNAs with the long (222 nt) one cannot. Examination of the long 5′-UTR revealed four upstream AUGs, which are in the same reading frame as the unique physiological translation initiation codon. Further analysis demonstrated that these upstream AUGs act as negative cis elements for initiation at the downstream translation initiation codon and their inhibitory effect on M2 translation is eIF4G dependent. Based on the findings of this study, we conclude that the expression of M2 is likely regulated by fine tuning the translation from the mRNA with a long 5′-UTR during viral infection and during the DNA replication phase of cell proliferation.
PMCID: PMC1097769  PMID: 15888728
9.  EIF3 p170, a Mediator of Mimosine Effect on Protein Synthesis and Cell Cycle Progression 
Molecular Biology of the Cell  2003;14(9):3942-3951.
l-Mimosine, a plant amino acid, can reversibly block mammalian cells at late G1 phase and has been suggested to affect translation of mRNAs such as p27, the CDK inhibitor. However, the mechanism of this effect is not known. Regulation of translation generally occurs at the initiation step that, in mammalian cells, is a complex process that requires multiple eukaryotic initiation factors (eIFs) and ribosome. The effects of mimosine on initiation factors or regulators consequently will influence translation initiation. P170, a putative subunit of eIF3, has been suggested to be nonessential for eIF3 function to form preinitiation complexes and it may function as a regulator for translation of a subset of mRNAs. In this article, we tested this hypothesis and investigated whether eIF3 p170 mediates mimosine effect on mRNA translation. We found that p170 translation was dramatically reduced by mimosine due to its iron-chelating function. The decreased expression of p170 by mimosine caused diminished de novo synthesis of tyrosinated α-tubulin and elevated translation of p27 before cell cycle arrest. These observations suggest that p170 is likely an early response gene to mimosine treatment and a mediator for mimosine effect on mRNA translation. The effect of p170 on the synthesis of tyrosinated α-tubulin and p27 in a reciprocal manner also suggests that p170 functions as a regulator for mRNA translation.
PMCID: PMC196594  PMID: 12972576

Results 1-9 (9)