Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Expanding the catalog of cas genes with metagenomes 
Nucleic Acids Research  2013;42(4):2448-2459.
The CRISPR (clusters of regularly interspaced short palindromic repeats)–Cas adaptive immune system is an important defense system in bacteria, providing targeted defense against invasions of foreign nucleic acids. CRISPR–Cas systems consist of CRISPR loci and cas (CRISPR-associated) genes: sequence segments of invaders are incorporated into host genomes at CRISPR loci to generate specificity, while adjacent cas genes encode proteins that mediate the defense process. We pursued an integrated approach to identifying putative cas genes from genomes and metagenomes, combining similarity searches with genomic neighborhood analysis. Application of our approach to bacterial genomes and human microbiome datasets allowed us to significantly expand the collection of cas genes: the sequence space of the Cas9 family, the key player in the recently engineered RNA-guided platforms for genome editing in eukaryotes, is expanded by at least two-fold with metagenomic datasets. We found genes in cas loci encoding other functions, for example, toxins and antitoxins, confirming the recently discovered potential of coupling between adaptive immunity and the dormancy/suicide systems. We further identified 24 novel Cas families; one novel family contains 20 proteins, all identified from the human microbiome datasets, illustrating the importance of metagenomics projects in expanding the diversity of cas genes.
PMCID: PMC3936711  PMID: 24319142
2.  Characterization and Taxonomic Validity of the Ciliate Oxytricha trifallax (Class Spirotrichea) Based on Multiple Gene Sequences: Limitations in Identifying Genera Solely by Morphology 
Protist  2012;163(4):643-657.
Oxytricha trifallax — an established model organism for studying genome rearrangements, chromosome structure, scrambled genes, RNA-mediated epigenetic inheritance, and other phenomena — has been the subject of a nomenclature controversy for several years. Originally isolated as a sibling species of O. fallax, O. trifallax was reclassified in 1999 as Sterkiella histriomuscorum, a previously identified species, based on morphological similarity. The proper identification of O. trifallax is crucial to resolve in order to prevent confusion in both the comparative genomics and the general scientific communities. We analyzed nine conserved nuclear gene sequences between the two given species and several related ciliates. Phylogenetic analyses suggest that O. trifallax and a bona fide S. histriomuscorum have accumulated significant evolutionary divergence from each other relative to other ciliates such that they should be unequivocally classified as separate species. We also describe the original isolation of O. trifallax, including its comparison to O. fallax, and we provide criteria to identify future isolates of O. trifallax.
PMCID: PMC3433844  PMID: 22325790
Oxytricha fallax; Oxytricha trifallax; Sterkiella histriomuscorum; ciliate; spirotrich; hypotrich; evolution; phylogeny; concatenated tree
3.  Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential 
Genome Biology and Evolution  2013;5(6):1200-1211.
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
PMCID: PMC3698930  PMID: 23737328
ciliated protozoa; developmentally regulated genome rearrangements; DNA splicing; internal eliminated sequences; genome evolution
4.  CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes 
Genome Biology  2013;14(4):R40.
Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets.
We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs.
We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders.
PMCID: PMC4053933  PMID: 23628424
CRISPR-Cas system; human microbiome; mobile genetic element (MGE)
5.  A Genomic Survey of Reb Homologs Suggests Widespread Occurrence of R-Bodies in Proteobacteria 
G3: Genes|Genomes|Genetics  2013;3(3):505-516.
Bacteria and eukaryotes are involved in many types of interaction in nature, with important ecological consequences. However, the diversity, occurrence, and mechanisms of these interactions often are not fully known. The obligate bacterial endosymbionts of Paramecium provide their hosts with the ability to kill sensitive Paramecium strains through the production of R-bodies, highly insoluble coiled protein ribbons. R-bodies have been observed in a number of free-living bacteria, where their function is unknown. We have performed an exhaustive survey of genes coding for homologs of Reb proteins (R-body components) in complete bacterial genomes. We found that reb genes are much more widespread than previously thought, being present in representatives of major Proteobacterial subdivisions, including many free-living taxa, as well as taxa known to be involved in various kinds of interactions with eukaryotes, from mutualistic associations to pathogenicity. Reb proteins display very good conservation at the sequence level, suggesting that they may produce functional R-bodies. Phylogenomic analysis indicates that reb genes underwent a complex evolutionary history and allowed the identification of candidates potentially involved in R-body assembly, functioning, regulation, or toxicity. Our results strongly suggest that the ability to produce R-bodies is likely widespread in Proteobacteria. The potential involvement of R-bodies in as yet unexplored interactions with eukaryotes and the consequent ecological implications are discussed.
PMCID: PMC3583457  PMID: 23450193
kappa particles; Caedibacter; phylogenomics
6.  Oral Spirochetes Implicated in Dental Diseases Are Widespread in Normal Human Subjects and Carry Extremely Diverse Integron Gene Cassettes 
Applied and Environmental Microbiology  2012;78(15):5288-5296.
The NIH Human Microbiome Project (HMP) has produced several hundred metagenomic data sets, allowing studies of the many functional elements in human-associated microbial communities. Here, we survey the distribution of oral spirochetes implicated in dental diseases in normal human individuals, using recombination sites associated with the chromosomal integron in Treponema genomes, taking advantage of the multiple copies of the integron recombination sites (repeats) in the genomes, and using a targeted assembly approach that we have developed. We find that integron-containing Treponema species are present in ∼80% of the normal human subjects included in the HMP. Further, we are able to de novo assemble the integron gene cassettes using our constrained assembly approach, which employs a unique application of the de Bruijn graph assembly information; most of these cassette genes were not assembled in whole-metagenome assemblies and could not be identified by mapping sequencing reads onto the known reference Treponema genomes due to the dynamic nature of integron gene cassettes. Our study significantly enriches the gene pool known to be carried by Treponema chromosomal integrons, totaling 826 (598 97% nonredundant) genes. We characterize the functions of these gene cassettes: many of these genes have unknown functions. The integron gene cassette arrays found in the human microbiome are extraordinarily dynamic, with different microbial communities sharing only a small number of common genes.
PMCID: PMC3416431  PMID: 22635997
7.  The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes 
PLoS Biology  2013;11(1):e1001473.
With more chromosomes than any other sequenced genome, the macronuclear genome of Oxytricha trifallax has a unique and complex architecture, including alternative fragmentation and predominantly single-gene chromosomes.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.
Author Summary
The macronuclear genome of the ciliate Oxytricha trifallax, contained in its somatic nucleus, has a unique genome architecture. Unlike its diploid germline genome, which is transcriptionally inactive during normal cellular growth, the macronuclear genome is fragmented into at least 16,000 tiny (∼3.2 kb mean length) chromosomes, most of which encode single actively transcribed genes and are differentially amplified to a few thousand copies each. The smallest chromosome is just 469 bp, while the largest is 66 kb and encodes a single enormous protein. We found considerable variation in the genome, including frequent alternative fragmentation patterns, generating chromosome isoforms with shared sequence. We also found limited variation in chromosome amplification levels, though insufficient to explain mRNA transcript level variation. Another remarkable feature of Oxytricha's macronuclear genome is its inordinate fondness for telomeres. In conjunction with its possession of tens of millions of chromosome-ending telomeres per macronucleus, we show that Oxytricha has evolved multiple putative telomere-binding proteins. In addition, we identified two new domesticated transposase-like protein classes that we propose may participate in the process of genome rearrangement. The macronuclear genome now provides a crucial resource for ongoing studies of genome rearrangement processes that use Oxytricha as an experimental or comparative model.
PMCID: PMC3558436  PMID: 23382650
8.  The gain and loss of chromosomal integron systems in the Treponema species 
Integron systems are now recognized as important agents of bacterial evolution and are prevalent in most environments. One of the human pathogens known to harbor chromosomal integrons, the Treponema spirochetes are the only clade among spirochete species found to carry integrons. With the recent release of many new Treponema genomes, we were able to study the distribution of chromosomal integrons in this genus.
We find that the Treponema spirochetes implicated in human periodontal diseases and those isolated from cow and swine intestines contain chromosomal integrons, but not the Treponema species isolated from termite guts. By examining the species tree of selected spirochetes (based on 31 phylogenetic marker genes) and the phylogenetic tree of predicted integron integrases, and assisted by our analysis of predicted integron recombination sites, we found that all integron systems identified in Treponema spirochetes are likely to have evolved from a common ancestor—a horizontal gain into the clade. Subsequent to this event, the integron system was lost in the branch leading to the speciation of T. pallidum and T. phagedenis (the Treponema sps. implicated in sexually transmitted diseases). We also find that the lengths of the integron attC sites shortened through Treponema speciation, and that the integron gene cassettes of T. denticola are highly strain specific.
This is the first comprehensive study to characterize the chromosomal integron systems in Treponema species. By characterizing integron distribution and cassette contents in the Treponema sps., we link the integrons to the speciation of the various species, especially to the pathogens T. pallidum and T. phagedenis.
PMCID: PMC3607928  PMID: 23339550
Chromosomal integron; Treponema species; Integron integrase; attC site
9.  A Functional Role for Transposases in a Large Eukaryotic Genome 
Science (New York, N.Y.)  2009;324(5929):935-938.
Despite comprising much of the eukaryotic genome, few transposons are active, and they usually confer no benefit to the host. Through an exaggerated process of genome rearrangement, Oxytricha trifallax destroys 95% of its germline genome during development. This includes the elimination of all transposon DNA. We show that germline-limited transposase genes play key roles in this process of genome-wide DNA excision, which suggests that transposases function in large eukaryotic genomes containing thousands of active transposons. We show that transposase gene expression occurs during germline-soma differentiation and that silencing of transposase by RNA interference leads to abnormal DNA rearrangement in the offspring. This study suggests a new important role in Oxytricha for this large portion of genomic DNA that was previously thought of as junk.
PMCID: PMC3491810  PMID: 19372392
10.  Stitching gene fragments with a network matching algorithm improves gene assembly for metagenomics 
Bioinformatics  2012;28(18):i363-i369.
Motivation: One of the difficulties in metagenomic assembly is that homologous genes from evolutionarily closely related species may behave like repeats and confuse assemblers. As a result, small contigs, each representing a short gene fragment, instead of complete genes, may be reported by an assembler. This further complicates annotation of metagenomic datasets, as annotation tools (such as gene predictors or similarity search tools) typically perform poorly on configs encoding short gene fragments.
Results: We present a novel way of using the de Bruijn graph assembly of metagenomes to improve the assembly of genes. A network matching algorithm is proposed for matching the de Bruijn graph of contigs against reference genes, to derive ‘gene paths’ in the graph (sequences of contigs containing gene fragments) that have the highest similarities to known genes, allowing gene fragments contained in multiple contigs to be connected to form more complete (or intact) genes. Tests on simulated and real datasets show that our approach (called GeneStitch) is able to significantly improve the assembly of genes from metagenomic sequences, by connecting contigs with the guidance of homologous genes—information that is orthogonal to the sequencing reads. We note that the improvement of gene assembly can be observed even when only distantly related genes are available as the reference. We further propose to use ‘gene graphs’ to represent the assembly of reads from homologous genes and discuss potential applications of gene graphs to improving functional annotation for metagenomics.
Availability: The tools are available as open source for download at
PMCID: PMC3436815  PMID: 22962453
11.  Diverse CRISPRs Evolving in Human Microbiomes 
PLoS Genetics  2012;8(6):e1002441.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of microbiomes.
Author Summary
Human bodies are complex ecological systems in which various microbial organisms and viruses interact with each other and with the human host. The Human Microbiome Project (HMP) has resulted in >700 datasets of shotgun metagenomic sequences, from which we can learn about the compositions and functions of human-associated microbial communities. CRISPR/Cas systems are a widespread class of adaptive immune systems in bacteria and archaea, providing acquired immunity against foreign nucleic acids: CRISPR/Cas defense pathways involve integration of viral- or plasmid-derived DNA segments into CRISPR arrays (forming spacers between repeated structural sequences), and expression of short crRNAs from these single repeat-spacer units, to generate interference to future invading foreign genomes. Powered by an effective computational approach (the targeted assembly approach for CRISPR), our analysis of CRISPR arrays in the HMP datasets provides the very first global view of bacterial immunity systems in human-associated microbial communities. The great diversity of CRISPR spacers we observed among different body sites, in different individuals, and in single individuals over time, indicates the impact of subtle niche differences on the evolution of CRISPR defenses and indicates the key role of bacteriophage (and plasmids) in shaping human microbial communities.
PMCID: PMC3374615  PMID: 22719260
12.  The Oxytricha trifallax Mitochondrial Genome 
Genome Biology and Evolution  2011;4(2):136-154.
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (∼70 kb) plus a ∼5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
PMCID: PMC3318907  PMID: 22179582
split genes; segmental duplication; genome expansion; linear mitochondrial plasmid; mobile elements; extreme mitochondrial divergences
13.  A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes 
PLoS Computational Biology  2009;5(8):e1000465.
A common biological pathway reconstruction approach—as implemented by many automatic biological pathway services (such as the KAAS and RAST servers) and the functional annotation of metagenomic sequences—starts with the identification of protein functions or families (e.g., KO families for the KEGG database and the FIG families for the SEED database) in the query sequences, followed by a direct mapping of the identified protein families onto pathways. Given a predicted patchwork of individual biochemical steps, some metric must be applied in deciding what pathways actually exist in the genome or metagenome represented by the sequences. Commonly, and straightforwardly, a complete biological pathway can be identified in a dataset if at least one of the steps associated with the pathway is found. We report, however, that this naïve mapping approach leads to an inflated estimate of biological pathways, and thus overestimates the functional diversity of the sample from which the DNA sequences are derived. We developed a parsimony approach, called MinPath (Minimal set of Pathways), for biological pathway reconstructions using protein family predictions, which yields a more conservative, yet more faithful, estimation of the biological pathways for a query dataset. MinPath identified far fewer pathways for the genomes collected in the KEGG database—as compared to the naïve mapping approach—eliminating some obviously spurious pathway annotations. Results from applying MinPath to several metagenomes indicate that the common methods used for metagenome annotation may significantly overestimate the biological pathways encoded by microbial communities.
Author Summary
Even though there is only a single large biological network within any cell and all pathways are to some extent connected, the partition of the entire cellular network into smaller units (e.g., KEGG pathways) is extremely important for understanding biological processes. Biological pathway reconstruction, therefore, is essential for understanding the biological functions that a newly sequenced genome encodes and recently for studying the functionality of a natural environment via metagenomics. The common practice of pathway reconstruction in metagenomics first identifies functions encoded by the metagenomic sequences and then reconstructs pathways from the annotated functions by mapping the functions to reference pathways. To address the issues of both incomplete data (e.g., metagenomes, unlike individual genomes, are most likely incomplete) and pathway redundancy (e.g., the same function is involved in multiple pathway units), we formulate a parsimony version of the pathway reconstruction/inference problem, called MinPath (Minimal set of Pathways): given a set of reference pathways and a set of functions that can be mapped to one or more pathways, MinPath aims at finding a minimum number of pathways that can explain all functions. MinPath achieves a more conservative, yet more faithful, estimation of the biological pathways encoded by genomes and metagenomes.
PMCID: PMC2714467  PMID: 19680427
14.  RNA-mediated epigenetic programming of a genome-rearrangement pathway 
Nature  2007;451(7175):153-158.
Genome-wide DNA rearrangements occur in many eukaryotes but are most exaggerated in ciliates, making them ideal model systems for epigenetic phenomena. During development of the somatic macronucleus, Oxytricha trifallax destroys 95% of its germ line, severely fragmenting its chromosomes, and then unscrambles hundreds of thousands of remaining fragments by permutation or inversion. Here we demonstrate that DNA or RNA templates can orchestrate these genome rearrangements in Oxytricha, supporting an epigenetic model for sequence-dependent comparison between germline and somatic genomes. A complete RNA cache of the maternal somatic genome may be available at a specific stage during development to provide a template for correct and precise DNA rearrangement. We show the existence of maternal RNA templates that could guide DNA assembly, and that disruption of specific RNA molecules disables rearrangement of the corresponding gene. Injection of artificial templates reprogrammes the DNA rearrangement pathway, suggesting that RNA molecules guide genome rearrangement.
PMCID: PMC2647009  PMID: 18046331
15.  The Pathway to Detangle a Scrambled Gene 
PLoS ONE  2008;3(6):e2330.
Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20–30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development.
Methodology/Principal Findings
To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways.
This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules.
PMCID: PMC2394655  PMID: 18523559
16.  Bats Use Magnetite to Detect the Earth's Magnetic Field 
PLoS ONE  2008;3(2):e1676.
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.
PMCID: PMC2246016  PMID: 18301753
17.  Selection on the Genes of Euplotes crassus Tec1 and Tec2 Transposons: Evolutionary Appearance of a Programmed Frameshift in a Tec2 Gene Encoding a Tyrosine Family Site-Specific Recombinase 
Eukaryotic Cell  2003;2(1):95-102.
The Tec1 and Tec2 transposons of the ciliate Euplotes crassus carry a gene for a tyrosine-type site-specific recombinase. The expression of the Tec2 gene apparently uses a programmed +1 frameshift. To test this hypothesis, we first examined whether this gene has evolved under purifying selection in Tec1 and Tec2. Each element carries three genes, and each has evolved under purifying selection for the function of its encoded protein, as evidenced by a dearth of nonsynonymous changes. This distortion of divergence is apparent in codons both 5′ and 3′ of the frameshift site. Thus, Tec2 transposons have diverged from each other while using a programmed +1 frameshift to produce recombinase, the function of which is under purifying selection. What might this function be? Tyrosine-type site-specific recombinases are extremely rare in eukaryotes, and Tec elements are the first known eukaryotic type II transposons to encode a site-specific recombinase. Tec elements also encode a widespread transposase. The Tec recombinase might function in transposition, resolve products of transposition (bacterial replicative transposons use recombinase or resolvase to separate joined replicons), or provide a function that benefits the ciliate host. Transposons in ciliated protozoa are removed from the macronucleus, and it has been proposed that the transposons provide this “excisase” activity.
PMCID: PMC141166  PMID: 12582126
18.  Telomere formation on macronuclear chromosomes of Oxytricha trifallax and O. fallax: alternatively processed regions have multiple telomere addition sites 
BMC Genetics  2002;3:16.
Ciliates employ massive chromatid breakage and de novo telomere formation during generation of the somatic macronucleus. Positions flanking the 81-MAC locus are reproducibly cut. But those flanking the Common Region are proposed to often escape cutting, generating three nested macronuclear chromosomes, two retaining "arms" still appended to the Common Region. Arm-distal positions must differ (in cis) from the Common Region flanks.
The Common-Region-flanking positions also differ from the arm-distal positions in that they are "multi-TAS" regions: anchored PCR shows heterogeneous patterns of telomere addition sites, but arm-distal sites do not. The multi-TAS patterns are reproducible, but are sensitive to the sequence of the allele being processed. Thus, random degradation following chromatid cutting does not create this heterogeneity; these telomere addition sites also must be dictated by cis-acting sequences.
Most ciliates show such micro-heterogeneity in the precise positions of telomere addition sites. Telomerase is believed to be tightly associated with, and act in concert with, the chromatid-cutting nuclease: heterogeneity must be the result of intervening erosion activity. Our "weak-sites" hypothesis explains the correlation between alternative chromatid cutting at the Common Region boundaries and their multi-TAS character: when the chromatid-breakage machine encounters either a weak binding site or a weak cut site at these regions, then telomerase dissociates prematurely, leaving the new end subject to erosion by an exonuclease, which pauses at cis-acting sequences; telomerase eventually heals these resected termini. Finally, we observe TAS positioning influenced by trans-allelic interactions, reminiscent of transvection.
PMCID: PMC128808  PMID: 12199911

Results 1-18 (18)