PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A Single Residue Switch for Mg2+-dependent Inhibition Characterizes Plant Class II Diterpene Cyclases from Primary and Secondary Metabolism* 
The Journal of Biological Chemistry  2010;285(27):20558-20563.
Class II diterpene cyclases mediate the acid-initiated cycloisomerization reaction that serves as the committed step in biosynthesis of the large class of labdane-related diterpenoid natural products, which includes the important gibberellin plant hormones. Intriguingly, these enzymes are differentially susceptible to inhibition by their Mg2+ cofactor, with those involved in gibberellin biosynthesis being more sensitive to such inhibition than those devoted to secondary metabolism, which presumably limits flux toward the potent gibberellin phytohormones. Such inhibition has been suggested to arise from intrasteric Mg2+ binding to the DXDD motif that cooperatively acts as the catalytic acid, whose affinity must then be modulated in some fashion. While further investigating class II diterpene cyclase catalysis, we discovered a conserved basic residue that seems to act as a counter ion to the DXDD motif, enhancing the ability of aspartic acid to carry out the requisite energetically difficult protonation of a carbon-carbon double bond and also affecting inhibitory Mg2+ binding. Notably, this residue is conserved as a histidine in enzymes involved in gibberellin biosynthesis and as an arginine in those dedicated to secondary metabolism. Interchanging the identity of these residues is sufficient to switch the sensitivity of the parent enzyme to inhibition by Mg2+. These striking findings indicate that this is a single residue switch for Mg2+ inhibition, which not only supports the importance of this biochemical regulatory mechanism in limiting gibberellin biosynthesis, but the importance of its release, presumably to enable higher flux, into secondary metabolism.
doi:10.1074/jbc.M110.123307
PMCID: PMC2898348  PMID: 20430888
Enzyme Catalysis; Enzyme Mechanisms; Evolution; Metabolism; Metabolic Regulation; Diterpene; Gibberellins; Natural Products; Terpene Synthases
2.  Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering 
Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-009-2219-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s00253-009-2219-x
PMCID: PMC2811251  PMID: 19777230
Terpenoid; Natural products biosynthesis; Metabolic engineering; Isoprenoid

Results 1-2 (2)