Search tips
Search criteria

Results 1-25 (37)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  SMYD1, an SRF-Interacting Partner, Is Involved in Angiogenesis 
PLoS ONE  2016;11(1):e0146468.
Previous studies have demonstrated that Smyd1 plays a critical role in cardiomyocyte differentiation, cardiac morphogenesis and myofibril organization. In this study, we uncovered a novel function of Smyd1 in the regulation of endothelial cells (ECs). Our data showed that Smyd1 is expressed in vascular endothelial cells, and knockdown of SMYD1 in endothelial cells impairs EC migration and tube formation. Furthermore, Co-IP and GST pull-down assays demonstrated that SMYD1 is associated with the Serum Response Factor (SRF). EMSA assays further showed that SMYD1 forms a complex with SRF and enhances SRF DNA binding activity. Our studies indicate that SMYD1 serves as an SRF-interacting protein, enhances SRF DNA binding activity, and is required for EC migration and tube formation to regulate angiogenesis.
PMCID: PMC4723226  PMID: 26799706
2.  Telomerase reverse transcriptase methylation predicts lymph node metastasis and prognosis in patients with gastric cancer 
OncoTargets and therapy  2016;9:279-286.
Telomerase activity is associated with cellular immortalization and is present in most human tumors but absent in normal tissues. The activity of telomerase reverse transcriptase (TERT), a catalytic telomerase subunit, correlates with telomerase activity in tumors. The objective of this study was to investigate TERT promoter methylation and its prognostic impact in gastric cancer (GC).
Patients and methods
The analysis of TERT promoter methylation was performed in tumors and corresponding normal tissues of 116 patients with GC using a highly sensitive Sequenom Epityper assay. The expression of TERT in GC tissues was measured by quantitative real-time polymerase chain reaction.
The levels of TERT promoter methylation in GC samples were significantly higher than in normal adjacent tissues (P=0.002). Hypermethylation of TERT promoter was associated with high T-stage (P=0.024), late N-stage (P=0.006), and lymphovascular/neural invasion (P=0.035), without correlation with age, sex, or histological grade. Simple linear regression analysis showed that TERT mRNA correlated positively with TERT methylation (R2=0.562, P=0.001). Also, higher TERT mRNA expression was related to hypermethylation of TERT promoter in GC samples (P=0.005). Univariate analysis demonstrated that N-stage (P=0.002) and TERT promoter methylation (P=0.004) were predictive of overall survival. Furthermore, multivariate analysis confirmed that N-stage (P=0.013) and TERT promoter methylation (P=0.031) were independent prognostic indicators for overall survival.
Our data suggested that hypermethylation of TERT promoter may contribute to gastric wall invasion, lymph node metastasis, lymphovascular/neural invasion, and poor prognosis in GC. GC patients with hypermethylation of TERT promoter could be eligible for close follow-up.
PMCID: PMC4716758  PMID: 26834487
telomerase reverse transcriptase; gastric cancer; methylation; prognosis; lymph node metastasis
3.  Atorvastatin treatment improves effects of implanted mesenchymal stem cells: meta-analysis of animal models with acute myocardial infarction 
Previous studies reported that Atorvastatin (ATOR) can improve the efficacy of Mesenchymal stem cells (MSCs) transplantation after acute myocardial infarction (AMI). However, the results of those studies were inconsistent. To clarify the beneficial effects of atorvastatin added to the cell therapy with MSCs in animal model of acute myocardial infarction (AMI), we performed a systematic review and meta-analysis of case–control studies.
Searches were performed using the PubMed database, the Excerpta Medica Database (Embase), the Science Citation Index, the China National Knowledge Information database, the Wanfang database, and the Chinese Scientific and Technological Journal Database (VIP database). The search term included “Atorvastatin (or Ator)”, “Mesenchymal Stem Cells (or Mesenchymal Stem Cell or MSC or MSCs)” and “Acute Myocardial Infarction (or Myocardial Infarction or AMI or MI)”. The endpoints were the left ventricular ejection fraction (LVEF) in animal model with AMI.
In total, 5 studies were included in the meta-analysis. Pooled analysis indicated a significant LVEF difference at 4 weeks follow-up between MSCs + ATOR combine group and MSCs alone group (95 % CI, 9.09–13.62 %; P < 0.01) with heterogeneity (P = 0.28; P >0.05) and inconsistency (I2: 22 %).
Atorvastatin can enhance the existing effects of MSCs transplantation, and this combinational therapy is a superior cell/pharmacological therapeutic approach that merits future preclinical and clinical studies.
PMCID: PMC4678482  PMID: 26667804
Meta-analysis; Acute myocardial infarction; Animal models; Cell therapy; Mesenchymal stem cells
4.  Advances in lupus genetics and epigenetics 
Current opinion in rheumatology  2014;26(5):482-492.
Purpose of review
Genome-wide association studies (GWAS) have identified more than 50 robust loci associated with SLE susceptibility, and follow-up studies help reveal candidate causative genetic variants and their biological relevance contributing to the development of SLE. Epigenetic modulation is emerging as an important mechanism for understanding how the implicated genes interact with environmental factors. We review recent progress towards identifying causative variants of SLE-associated loci and epigenetic impact to lupus, especially genetic-epigenetic interactions that modulate expression levels of SLE susceptibility genes.
Recent findings
A few SLE-risk loci have been refined to localize likely causative variants responsible for the observed GWAS signals. Few of such variants disrupt coding sequences resulting in gain or loss of function for the encoded protein, while most fall in noncoding regions with potential to regulate gene expression through alterations in transcriptional activity, splicing, mRNA stability and epigenetic modifications. Multiple key pathways related to the SLE pathogenesis have been indicated by the identified genetic risk factors, including type I interferon signaling pathway that can also be regulated by epigenetic changes occurred in SLE.
These findings provide novel insights of the disease pathogenesis, and promise better diagnostic accuracy and new therapeutic targets for patient management.
PMCID: PMC4222581  PMID: 25010439
genetics; epigenetics; causative variant; molecular pathways; systemic lupus erythematous
5.  Genetic polymorphisms of PAI-1 and PAR-1 are associated with acute normal tissue toxicity in Chinese rectal cancer patients treated with pelvic radiotherapy 
OncoTargets and therapy  2015;8:2291-2301.
Plasminogen activator inhibitor type 1 (PAI-1) and protease-activated receptor-1 (PAR-1) are crucial mediators of the intestinal microenvironment and are involved in radiation-induced acute and chronic injury. To evaluate whether genetic polymorphisms of PAI-1 and PAR-1 were predictors of radiation-induced injury in patients with rectal cancer, we retrospectively evaluated 356 rectal cancer patients who had received pelvic radiotherapy and analyzed the association of genetic polymorphisms of PAI-1 and PAR-1 with acute toxicities after radiotherapy. Acute adverse events were scored, including dermatitis, fecal incontinence (anal toxicity), hematological toxicity, diarrhea, and vomiting. The patients were grouped into grade ≥2 and grade 0–1 toxicity groups to analyze the acute toxicities. Genotyping of six single nucleotide polymorphisms (SNPs) of PAI-1 and PAR-1 was performed using TaqMan assays. A logistic regression model was used to estimate the odds ratios and 95% confidence intervals. Of the 356 individuals, 264 (72.5%) had grade ≥2 total toxicities; within this group, there were 65 (18.3%) individuals who reached grade ≥3 toxicities. There were 19.5% (69/354) and 36.9% (130/352) patients that developed grade ≥2 toxicities for diarrhea and fecal incontinence, respectively. The variant genotype GG of rs1050955 in PAI-1 was found to be negatively associated with the risk of diarrhea and incontinence (P<0.05), whereas the AG and GG genotypes of rs2227631 in PAI-1 were associated with an increased risk of incontinence. The CT genotype of PAR-1 rs32934 was associated with an increased risk of total toxicity compared with the CC allele. Our results demonstrated that SNPs in the PAI-1 and PAR-1 genes were associated with acute injury in rectal cancer patients treated with pelvic irradiation. These SNPs may be useful biomarkers for predicting acute radiotoxicity in patients with rectal cancer if validated in future studies.
PMCID: PMC4556037  PMID: 26347502
rectal cancer; pelvic radiotherapy; polymorphism; acute toxicity; biomarker
6.  Photonic ququart logic assisted by the cavity-QED system 
Scientific Reports  2015;5:13255.
Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions of qubit systems, we investigate the possibility of ququart systems (four-dimensional states) dependent on two DOFs of photon systems. We propose some useful one-parameter four-dimensional quantum transformations for the construction of universal ququart logic gates. The interface between the spin of a photon and an electron spin confined in a quantum dot embedded in a microcavity is applied to build universal ququart logic gates on the photon system with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-assisted quantum error-correcting code, which may be available in modern physical technology.
PMCID: PMC4536487  PMID: 26272869
7.  Lysimachia huangsangensis (Primulaceae), a New Species from Hunan, China 
PLoS ONE  2015;10(7):e0132713.
A new species, Lysimachia huangsangensis (Primulaceae), from Hunan, China is described and illustrated. The new species is closely related to L. carinata because of the crested calyx, but differs in the leaf blades that are ovate to elliptic and (3–)4.5–9 × 2–3.4 cm, 2–5-flowered racemes, and the calyx lobes that are ovate-lanceolate and 5–6 × 3–4 mm. The systematic placement and conservation status are also discussed.
PMCID: PMC4511667  PMID: 26201028
8.  Analgesic effects of melatonin on post-herpetic neuralgia 
Objective: This study aims to explore the analgesic effects of melatonin on post-herpetic neuralgia and its possible mechanism. Methods: A total of 48 PHN Wistar rats were divided into 4 groups randomly: Normal, PHN, PHN+MT and naloxone, 4P-PDOT or L-arginine+120 mg/kg MT (C). Heat pain latency was determined after MT injection for 20 min, 40 min, 80 min and 120 min respectively. The expression levels of δ receptor and MT2 receptor in different tissues of rats were detected by RT-PCR method. NO content was determined. Results: Heat pain latency in PHN rats were lower than that of control group (P<0.05), MT could increase the heat pain latency with dose-dependent, while naloxone, 4P-PDOT and L-arginine could reverse the analgesic effect of MT (P<0.05). The expression levels of δ receptor and MT2 receptor in spinal cord, hypothalamus and hippocampus in PHN+MT (120 mg/kg, i. p.) group were significantly higher than that of PHN group (P<0.05). The NO levels in the brain and spinal cord tissues in PHN group were higher than that of PHN+MT (120 mg/kg) group (P<0.05). Conclusions: MT had significant analgesic effects in the treatment of PHN, and its mechanism was closely related with δopioid receptor, NO and MT2 receptor.
PMCID: PMC4484015  PMID: 26131073
Melatonin (MT); analgesia; δopioid receptor; MT2 receptor; nitric oxide
9.  ApnI, a Transmembrane Protein Responsible for Subtilomycin Immunity, Unveils a Novel Model for Lantibiotic Immunity 
Applied and Environmental Microbiology  2014;80(20):6303-6315.
Subtilomycin was detected from the plant endophytic strain Bacillus subtilis BSn5 and was first reported from B. subtilis strain MMA7. In this study, a gene cluster that has been proposed to be related to subtilomycin biosynthesis was isolated from the BSn5 genome and was experimentally validated by gene inactivation and heterologous expression. Comparison of the subtilomycin gene cluster with other verified related lantibiotic gene clusters revealed a particular organization of the genes apnI and apnT downstream of apnAPBC, which may be involved in subtilomycin immunity. Through analysis of expression of the apnI and/or apnT genes in the subtilomycin-sensitive strain CU1065 and inactivation of apnI and apnT in the producer strain BSn5, we showed that the single gene apnI, encoding a putative transmembrane protein, was responsible for subtilomycin immunity. To our knowledge, evidence for lantibiotic immunity that is solely dependent on a transmembrane protein is quite rare. Further bioinformatic analysis revealed the abundant presence of ApnI-like proteins that may be responsible for lantibiotic immunity in Bacillus and Paenibacillus. We cloned the paeI gene, encoding one such ApnI-like protein, into CU1065 and showed that it confers resistance to paenibacillin. However, no cross-resistance was detected between ApnI and PaeI, even though subtilomycin and paenibacillin share similar structures, suggesting that the protection provided by ApnI/ApnI-like proteins involves a specific-sequence recognition mechanism. Peptide release/binding assays indicated that the recombinant B. subtilis expressing apnI interacted with subtilomycin. Thus, ApnI represents a novel model for lantibiotic immunity that appears to be common.
PMCID: PMC4178640  PMID: 25085495
10.  Electroacupuncture Prevents Cognitive Impairments by Regulating the Early Changes after Brain Irradiation in Rats 
PLoS ONE  2015;10(4):e0122087.
Cognitive impairments severely affect the quality of life of patients who undergo brain irradiation, and there are no effective preventive strategies. In this study, we examined the therapeutic potential of electroacupuncture (EA) administered immediately after brain irradiation in rats. We detected changes in cognitive function, neurogenesis, and synaptic density at different time points after irradiation, but found that EA could protect the blood-brain barrier (BBB), inhibit neuroinflammatory cytokine expression, upregulate angiogenic cytokine expression, and modulate the levels of neurotransmitter receptors and neuropeptides in the early phase. Moreover, EA protected spatial memory and recognition in the delayed phase. At the cellular/molecular level, the preventative effect of EA on cognitive dysfunction was not dependent on hippocampal neurogenesis; rather, it was related to synaptophysin expression. Our results suggest that EA applied immediately after brain irradiation can prevent cognitive impairments by protecting against the early changes induced by irradiation and may be a novel approach for preventing or ameliorating cognitive impairments in patients with brain tumors who require radiotherapy.
PMCID: PMC4382177  PMID: 25830357
11.  Stanniocalicin 2 Suppresses Breast Cancer Cell Migration and Invasion via the PKC/Claudin-1-Mediated Signaling 
PLoS ONE  2015;10(4):e0122179.
Stanniocalcin (STC), a glycoprotein hormone, is expressed in a wide variety of tissues to regulate Ca2+ and PO4- homeostasis. STC2, a member of STC family, has been reported to be associated with tumor development. In this study, we investigated whether the expression of STC2 is associated with migration and invasion of breast cancer cells. We found that breast cancer cell line 231 HM transfected with STC2 shRNA displayed high motility, fibroblast morphology, and enhanced cell migration and invasion. Introduction of STC2 in 231 cells reduced cell migration and invasion. In response to irradiation, silencing of STC2 in 231 HM cells reduced apoptosis, whereas overexpression of STC2 in 231 cells promoted apoptosis, compared with in control cells. Mechanistic study showed that STC2 negatively regulated PKC to control the expression of Claudin-1, which subsequently induced the expressions of EMT-related factors including ZEB1, ZO-1, Slug, Twist, and MMP9. Suppression of PKC activity by using a PKC inhibitor (Go 6983) restored the normal motility of STC2-silenced cells. Furthermore, in vivo animal assay showed that STC2 inhibited tumorigenesis and metastasis of breast cancer cells. Collectively, these results indicate that STC2 may inhibit EMT at least partially through the PKC/Claudin-1-mediated signaling in human breast cancer cells. Thus, STC2 may be exploited as a biomarker for metastasis and targeted therapy in human breast cancer.
PMCID: PMC4382185  PMID: 25830567
12.  Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage 
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disorder. Considerable progress has been made to delineate the genetic control of this complex disorder. In this review, selected aspects of human and mouse genetics related to SLE are reviewed with emphasis on genes that contribute to both innate and adaptive immunity and to genes that contribute directly to susceptibility to end organ damage. It is concluded that the interactions among these two major pathways will provide further insight into the pathogenesis of SLE. An interactive model of the two major pathways is proposed without emphasis on the importance of breaking tolerance to autoantigens.
PMCID: PMC4274270  PMID: 25458999
14.  Isolation and complete nucleotide sequence of a Batai virus strain in Inner Mongolia, China 
Virology Journal  2014;11:138.
Batai virus (BATV) is a member of the Orthobunyavirus genus of the family Bunyaviridae, and a vector-borne pathogen. Genomic variations of BATV exist in different regions of the world, due to genetic reassortment. Whole-genome sequencing of any isolate is necessary for a phylogenetic analysis. In 1998, a BATV strain was isolated from an Anopheles philippines mosquito in Yunnan Province, China. This strain has not been found to infect any other host. We investigated BATV infection in cattle in Inner Mongolia, China and performed deep sequencing of the genome of the BATV isolate.
Ninety-five blood samples were collected from cattle in Inner Mongolia, China in 2012. The BATV infection rate was 2.1%. Previously, BATV strain NM/12 was isolated from two cattle in Inner Mongolia, China, and the whole genomic sequence of the strain has been available. We determined the complete genomic nucleotide sequences of the small (S), medium (M), and large (L) genome segments using bovine blood obtained in 2012, and the nucleotide homologies of these segments with those from GenBank were 88.7%-97%, 84%-95.4%, and 72.6%-95.8%, respectively. The deduced amino acid identities were 87.2-99.7%, 64.2-96.8%, and 81.1-98.6%. Phylogenetic analyses based on full-length genomic sequences indicated that the M and L segments, and a portion of the S segment, of NM/12 are most closely related to the BATV strains isolated in Asia. The S and M segments of NM/12 were independent of phylogenetic lineages. The L segment was the most closely related to Chittoor/IG-20217 (isolated in India), and distantly related to isolated strains in Italy. Nucleotide substitution rates in the nucleotide sequences that code for the nucleocapsid, envelope glycoprotein, and polymerase protein of NM/12 strain were 2.56%, 4.69%, and 4.21%, respectively, relative to the original strain of MM2222.
A novel BATV NM/12 strain from bovine serum collected in Inner Mongolia was isolated from cattle in China for the first time. Our findings elucidate the evolutionary status of the BATV NM/12 strain among different orthobunyavirus strains and may provide some clues to prevent the emergence of BATV infection in cattle and humans.
PMCID: PMC4127039  PMID: 25100223
Batai virus; Orthobunyavirus; Bunyaviridae; Reassortment
15.  Cardiac Troponin T (TNNT2) Mutations in Chinese Dilated Cardiomyopathy Patients 
BioMed Research International  2014;2014:907360.
Background. Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure with high morbidity and mortality. Although more than 40 genes have been reported to cause DCM, the role of genetic testing in clinical practice is not well defined. Mutations in the troponin T (TNNT2) gene represent an important subset of known disease-causing mutations associated with DCM. Therefore, the aim of the present study was to determine the genetic variations in TNNT2 and the associations of those variations with DCM in Chinese patients. Methods. An approximately 4 kb fragment of the TNNT2 gene was isolated from 103 DCM patients and 192 healthy controls and was analyzed by DNA sequence analysis for genetic variations. Results. A total of 6 TNNT2 mutations were identified in 99 patients, including a G321T missense mutation (Leu84Phe) and 5 novel intronic mutations. Alleles of two novel SNPs (c.192 + 353 C>A, OR = 0.095, 95% CI: 0.013–0.714, P = 0.022; c.192 + 463 G>A, OR = 0.090, 95% CI: 0.012–0.675, P = 0.019) and SNP rs3729843 (OR = 1.889, 95% CI: 1.252–2.852; P = 0.002) were significantly correlated with DCM. Conclusions. These results suggest that the missense mutation (Leu84Phe) and two novel SNPs (c.192 + 353 C>A, c.192 + 463 G>A) in TNNT2 gene might be associated with DCM in the Chinese population.
PMCID: PMC4109665  PMID: 25110706
16.  A new approach for noninvasive transdermal determination of blood uric acid levels 
The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB) for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W), electroporation (100 V/cm2), and reverse iontophoresis (0.5 mA/cm2) was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2) demonstrated enough sensitivity (9.4 μA/mM) for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R2=0.894) was demonstrated to exist between the concentration of uric acid (0.2–0.8 mM) inside the diffusion cell and the current response of the UAB-1×3-ZnO2. In conclusion, a new approach to noninvasive transdermal extraction and quantification of uric acid has been established.
PMCID: PMC4085317  PMID: 25061289
laser; electroporation; reverse iontophoresis; noninvasive; uric acid; biosensor
17.  Trapping Cardiac Recessive Mutants via Expression-based Insertional Mutagenesis Screening 
Circulation research  2013;112(4):606-617.
Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ such as the heart, especially those exhibiting adult phenotypes upon depletion.
We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes.
Methods and Results
The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein (mRFP) reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of one embryonic lethal, one larval lethal, and one adult recessive mutant exhibiting cardiac hypertrophy at one year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, alpha a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy.
We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a Zebrafish Insertional Cardiac (ZIC) mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.
PMCID: PMC3603352  PMID: 23283723
Gene trapping; insertional mutagenesis screen; cardiac mutants; adult recessive; zebrafish; transposon
18.  SNPs in VKORC1 are Risk Factors for Systemic Lupus Erythematosus in Asians 
Arthritis and rheumatism  2013;65(1):211-215.
The increased risk of thrombosis in systemic lupus erythematosus (SLE) may be partially explained by interrelated genetic pathways for thrombosis and SLE. In a case-control analysis, we investigated whether 33 established and novel single nucleotide polymorphisms (SNP) in 20 genes involved in hemostasis pathways that have been associated with deep venous thrombosis in the general population were risk factors for SLE development among Asians.
Patients in the discovery cohort were enrolled in one of two North American SLE cohorts. Patients in the replication cohort were enrolled in one of four Asian or two North American cohorts. SLE cases met American College of Rheumatology classification criteria. We first genotyped 263 Asian SLE and 357 healthy Asian control individuals for 33 SNPs using Luminex multiplex technology in the discovery phase, and then used Taqman and Immunochip assays to examine 5 SNPs in up to an additional 1496 cases and 993 controls in the Replication phase. SLE patients were compared to healthy controls for association with minor alleles in allelic models. Principal components analysis was used to control for intra-Asian ancestry in an analysis of the replication cohort.
Two genetic variants in the gene VKORC1, rs9934438 and rs9923231, were highly significant in both the discovery and replication cohorts: OR(disc) = 2.45 (p=2×10−9), OR(rep) = 1.53 (p=5×10−6) and OR(disc) = 2.40 (p=6×10−9), OR(rep) = 1.53 (p=5×10−6), respectively. These associations were significant in the replication cohort after adjustment for intra-Asian ancestry: rs9934438 OR(adj) = 1.34 (p=0.0029) and rs9923231 OR(adj) = 1.34 (p=0.0032).
Genetic variants in VKORC1, involved in vitamin K reduction and associated with DVT, are associated with SLE development in Asians. These results suggest intersecting genetic pathways for the development of SLE and thrombosis.
PMCID: PMC3670944  PMID: 23124848
systemic lupus erythematosus; single nucleotide polymorphisms; genetic risk factors
19.  Differential loss of thalamostriatal and corticostriatal input to striatal projection neuron types prior to overt motor symptoms in the Q140 knock-in mouse model of Huntington's disease 
Motor slowing and forebrain white matter loss have been reported in premanifest Huntington's disease (HD) prior to substantial striatal neuron loss. These findings raise the possibility that early motor defects in HD may be related to loss of excitatory input to striatum. In a prior study, we showed that in the heterozygous Q140 knock-in mouse model of HD that loss of thalamostriatal axospinous terminals is evident by 4 months, and loss of corticostriatal axospinous terminals is evident at 12 months, before striatal projection neuron pathology. In the present study, we specifically characterized the loss of thalamostriatal and corticostriatal terminals on direct (dSPN) and indirect (iSPN) pathway striatal projection neurons, using immunolabeling to identify thalamostriatal (VGLUT2+) and corticostriatal (VGLUT1+) axospinous terminals, and D1 receptor immunolabeling to distinguish dSPN (D1+) and iSPN (D1−) synaptic targets. We found that the loss of corticostriatal terminals at 12 months of age was preferential for D1+ spines, and especially involved smaller terminals, presumptively of the intratelencephalically projecting (IT) type. By contrast, indirect pathway D1− spines showed little loss of axospinous terminals at the same age. Thalamostriatal terminal loss was comparable for D1+ and D1− spines at both 4 and 12 months. Regression analysis showed that the loss of VGLUT1+ terminals on D1+ spines was correlated with a slight decline in open field motor parameters at 12 months. Our overall results raise the possibility that differential thalamic and cortical input loss to SPNs is an early event in human HD, with cortical loss to dSPNs in particular contributing to premanifest motor slowing.
PMCID: PMC4197654  PMID: 25360089
Huntington's disease; corticostriatal; thalamostriatal; premanifest; pathology
20.  The Influence of Angiotensin Converting Enzyme and Angiotensinogen Gene Polymorphisms on Hypertrophic Cardiomyopathy 
PLoS ONE  2013;8(10):e77030.
Some studies have reported that angiotensin converting enzyme (ACE) and angiotensinogen (AGT) genes have been associated with hypertrophic cardiomyopathy (HCM). However, there have been inconsonant results among different studies. To clarify the influence of ACE and AGT on HCM, a systemic review and meta-analysis of case-control studies were performed. The following databases were searched to indentify related studies: PubMed database, the Embase database, the Cochrane Central Register of Controlled Trials database, China National Knowledge Information database, and Chinese Scientific and Technological Journal database. Search terms included “hypertrophic cardiomyopathy”, “angiotensin converting enzyme” (ACE) or “ACE” and “polymorphism or mutation”. For the association of AGT M235T polymorphism and HCM, “angiotensin converting enzyme” or “ACE” was replaced with “angiotensinogen”. A total of seventeen studies were included in our review. For the association of ACE I/D polymorphism and HCM, eleven literatures were included in the meta-analysis on association of penetrance and genotype. Similarly, six case-control studies were included in the meta-analysis for AGT M235T. For ACE I/D polymorphism, the comparison of DI/II genotype vs DD genotype was performed in the present meta-analysis. The OR was 0.73 (95% CI: 0.527, 0.998, P = 0.049, power = 94%, alpha = 0.05) after the study which deviated from Hardy-Weinberg Equilibrium was excluded, indicating that the ACE I/D gene polymorphism might be associated with HCM. The AGT M235T polymorphism did not significantly affect the risk of HCM. In addition, ACE I/D gene polymorphism did not significantly influence the interventricular septal thickness in HCM patients. In conclusion, the ACE I/D polymorphism might be associated with the risk of HCM.
PMCID: PMC3808382  PMID: 24204726
21.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
PMCID: PMC3794920  PMID: 24130510
22.  CpG oligodeoxynucleotide ligand potentiates the activity of the pVAX1-Sj26GST 
Biomedical Reports  2013;1(4):609-613.
Schistosomiasis is considered one of the most important neglected tropical diseases and remains a major public health problem in endemic countries. Toll-like receptor (TLR) ligands have been investigated as potential vaccine adjuvants for tumor and virus immunotherapy. However, few TLR ligands affecting schistosoma vaccines have been characterized. In this study, we evaluated a TLR9 ligand (CpG oligodeoxynucleotide 1826, CpG) as an adjuvant for a partially protective DNA vaccine encoding a 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). Vaccination with pVAX1-Sj26GST in combination with CpG inhibited Treg immunosuppressive function, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2 and IL-6, and decreased CD4+CD8+Foxp3+ expression in vitro, which may contribute to the escape from Treg-mediated suppression during vaccination, allowing expansion of antigen-specific T cells against pathogens. In conclusion, our data demonstrated that selective TLR ligand combination may increase protective efficacy against schistosomiasis, which may synergistically antagonize Treg-mediated suppression.
PMCID: PMC3916974  PMID: 24648995
CpG oligodeoxynucleotide ligand; pVAX1-Sj26GST; vaccine
23.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
PMCID: PMC3585142  PMID: 23468661
24.  The Role of Stream Water Carbon Dynamics and Export in the Carbon Balance of a Tropical Seasonal Rainforest, Southwest China 
PLoS ONE  2013;8(2):e56646.
A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.
PMCID: PMC3577870  PMID: 23437195
25.  DNA based identification of medicinal materials in Chinese patent medicines 
Scientific Reports  2012;2:958.
Chinese patent medicines (CPM) are highly processed and easy to use Traditional Chinese Medicine (TCM). The market for CPM in China alone is tens of billions US dollars annually and some of the CPM are also used as dietary supplements for health augmentation in the western countries. But concerns continue to be raised about the legality, safety and efficacy of many popular CPM. Here we report a pioneer work of applying molecular biotechnology to the identification of CPM, particularly well refined oral liquids and injections. What's more, this PCR based method can also be developed to an easy to use and cost-effective visual chip by taking advantage of G-quadruplex based Hybridization Chain Reaction. This study demonstrates that DNA identification of specific Medicinal materials is an efficient and cost-effective way to audit highly processed CPM and will assist in monitoring their quality and legality.
PMCID: PMC3518818  PMID: 23233877

Results 1-25 (37)