Search tips
Search criteria

Results 1-25 (31)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin 
BMC Plant Biology  2014;14(1):370.
Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berry color and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages of ripening between 22 and 37 °Brix was assessed using whole-genome micorarrays.
The transcript abundance of approximately 18,000 genes changed with °Brix and tissue type. There were a large number of changes in many gene ontology (GO) categories involving metabolism, signaling and abiotic stress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolism and pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with °Brix revealed that there were statistically significantly higher abundances of transcripts changing with °Brix in the skin that were involved in ethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimal fruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamily of transcription factors changed during these developmental stages. The transcript abundance of a unique clade of ERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene, senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcript abundance of important transcription factors involved in fruit ripening was also higher in the skin.
A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berries revealed that these berries went through massive transcriptional changes in gene ontology categories involving chemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcript abundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statistically significant in the late stages of ripening when the production of transcripts for important flavor and aroma compounds were at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role in fruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0370-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4312598  PMID: 25524329
Ethylene; Fruit ripening; Grape; Microarray; Vitis vinifera L
2.  RNA-Seq profile of flavescence dorée phytoplasma in grapevine 
BMC Genomics  2014;15(1):1088.
The phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves.
With an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5′/3′ untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies.
The RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1088) contains supplementary material, which is available to authorized users.
PMCID: PMC4299374  PMID: 25495145
Flavescence dorée phytoplasma; RNA-Seq; Vitis vinifera; Group II intron; Hypothetical proteins; qRT-PCR
3.  Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance 
BMC Genomics  2014;15(1):710.
Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance.
A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection.
The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes and may have relevance to study other pathosystems involving mycotoxin-producing fungi.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-710) contains supplementary material, which is available to authorized users.
PMCID: PMC4153945  PMID: 25155950
RNA-Seq analysis; Fusarium ear rot; Constitutive defense; Secondary metabolism; Candidate genes; Zea mays
4.  Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway 
BMC Plant Biology  2014;14:188.
Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq.
The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3′5′H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3′5′H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between the central and specialized metabolism, stronger in Shiraz than Cabernet Sauvignon. RNAseq analysis also revealed that the two cultivars exhibited distinct pattern of changes in genes related to abscisic acid (ABA) biosynthesis enzymes.
Compared with CS, Shiraz showed higher number of significant correlations between metabolites, which together with the relatively higher expression of flavonoid genes supports the evidence of increased accumulation of coumaroyl anthocyanins in that cultivar. Enhanced stress related metabolism, e.g. trehalose, stilbene and ABA in Shiraz berry-skin are consistent with its relatively higher susceptibility to environmental cues.
PMCID: PMC4222437  PMID: 25064275
Metabolite profiling; Grape berry metabolism; Grapevine; Transcript analysis; Metabolomics; GC-MS; LC-MS
5.  Curtobacterium sp. Genome Sequencing Underlines Plant Growth Promotion-Related Traits 
Genome Announcements  2014;2(4):e00592-14.
Endophytic bacteria are microorganisms residing in plant tissues without causing disease symptoms. Here, we provide the high-quality genome sequence of Curtobacterium sp. strain S6, isolated from grapevine plant. The genome assembly contains 2,759,404 bp in 13 contigs and 2,456 predicted genes.
PMCID: PMC4102858  PMID: 25035321
6.  De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici 
BMC Genomics  2014;15:313.
Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production.
We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI).
The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits.
PMCID: PMC4234444  PMID: 24767544
Pyrenochaeta lycopersici; Pathogenicity; Genome assembly; Next Generation Sequencing technologies (NGS)
7.  The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms 
BioMed Research International  2014;2014:560340.
Usually the genetics of human longevity is restricted to the nuclear genome (nDNA). However it is well known that the nDNA interacts with a physically and functionally separated genome, the mitochondrial DNA (mtDNA) that, even if limited in length and number of genes encoded, plays a major role in the ageing process. The complex interplay between nDNA/mtDNA and the environment is most likely involved in phenomena such as ageing and longevity. To this scenario we have to add another level of complexity represented by the microbiota, that is, the whole set of bacteria present in the different part of our body with their whole set of genes. In particular, several studies investigated the role of gut microbiota (GM) modifications in ageing and longevity and an age-related GM signature was found. In this view, human being must be considered as “metaorganism” and a more holistic approach is necessary to grasp the complex dynamics of the interaction between the environment and nDNA-mtDNA-GM of the host during ageing. In this review, the relationship between the three genetics and human longevity is addressed to point out that a comprehensive view will allow the researchers to properly address the complex interactions that occur during human lifespan.
PMCID: PMC4017728  PMID: 24868529
8.  Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations 
BMC Genomics  2014;15:138.
Investigation of tomato genetic resources is a crucial issue for better straight evolution and genetic studies as well as tomato breeding strategies. Traditional Vesuviano and San Marzano varieties grown in Campania region (Southern Italy) are famous for their remarkable fruit quality. Owing to their economic and social importance is crucial to understand the genetic basis of their unique traits.
Here, we present the draft genome sequences of tomato Vesuviano and San Marzano genome. A 40x genome coverage was obtained from a hybrid Illumina paired-end reads assembling that combines de novo assembly with iterative mapping to the reference S. lycopersicum genome (SL2.40). Insertions, deletions and SNP variants were carefully measured. When assessed on the basis of the reference annotation, 30% of protein-coding genes are predicted to have variants in both varieties. Copy genes number and gene location were assessed by mRNA transcripts mapping, showing a closer relationship of San Marzano with reference genome. Distinctive variations in key genes and transcription/regulation factors related to fruit quality have been revealed for both cultivars.
The effort performed highlighted varieties relationships and important variants in fruit key processes useful to dissect the path from sequence variant to phenotype.
PMCID: PMC3936818  PMID: 24548308
Combined assembling; Fruit quality; NGS sequencing; SNPs; Solanum lycopersicum
9.  The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance against Plasmopara viticola 
PLoS ONE  2014;9(2):e88145.
Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca2+ concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.
PMCID: PMC3916396  PMID: 24516597
10.  A mutation in the FZL gene of Arabidopsis causing alteration in chloroplast morphology results in a lesion mimic phenotype 
Journal of Experimental Botany  2013;64(14):4313-4328.
Lesion mimic mutants (LMMs) are a class of mutants in which hypersensitive cell death and defence responses are constitutively activated in the absence of pathogen attack. Various signalling molecules, such as salicylic acid (SA), reactive oxygen species (ROS), nitric oxide (NO), Ca2+, ethylene, and jasmonate, are involved in the regulation of multiple pathways controlling hypersensitive response (HR) activation, and LMMs are considered useful tools to understand the role played by the key elements of the HR cell death signalling cascade. Here the characterization of an Arabidopsis LMM lacking the function of the FZL gene is reported. This gene encodes a membrane-remodelling GTPase playing an essential role in the determination of thylakoid and chloroplast morphology. The mutant displayed alteration in chloroplast number, size, and shape, and the typical characteristics of an LMM, namely development of chlorotic lesions on rosette leaves and constitutive expression of genetic and biochemical markers associated with defence responses. The chloroplasts are a major source of ROS, and the characterization of this mutant suggests that their accumulation, triggered by damage to the chloroplast membranes, is a signal sufficient to start the HR signalling cascade, thus confirming the central role of the chloroplast in HR activation.
PMCID: PMC3808314  PMID: 23963675
Arabidopsis thaliana; chloroplast; double mutants; expression analysis; lesion mimic mutants (LMMs); reactive oxygen species (ROS)
The New England journal of medicine  2011;365(4):295-306.
Focal segmental glomerulosclerosis (FSGS) is a kidney disease that presents with nephrotic syndrome and is often resistant to glucocorticosteroids and progresses to end-stage kidney disease in 50–70% of patients. Genetic studies in familial FSGS indicate that it is a disease of the podocytes, major components of the glomerular filtration barrier. However the molecular cause of over half of primary FSGS is unknown, and effective treatments have been elusive.
We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive linkage area in a family with autosomal recessive FSGS and sequenced a newly discovered gene in 52 unrelated FSGS patients. Immunohistochemistry was performed in human kidney biopsies and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified.
Two mutations (A159P and Y695X) in MYO1E, encoding the non-muscle class I myosin, myosin 1E (Myo1E), which segregated with FSGS in two independent pedigrees were identified. Patients were homozygous for the mutations and were resistant to glucocorticosteroids. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney biopsies in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and the tail domains of Myo1E.
MYO1E mutations lead to childhood onset steroid-resistant FSGS. These data support a role of Myo1E in podocyte function and the consequent integrity of the glomerular permselectivity barrier.
PMCID: PMC3701523  PMID: 21756023
12.  Exploration of the Genomic Diversity and Core Genome of the Bifidobacterium adolescentis Phylogenetic Group by Means of a Polyphasic Approach 
In the current work, we describe genome diversity and core genome sequences among representatives of three bifidobacterial species, i.e., Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium pseudocatenulatum, by employing a polyphasic approach involving analysis of 16S rRNA gene and 16S-23S internal transcribed spacer (ITS) sequences, pulsed-field gel electrophoresis (PFGE), and comparative genomic hybridization (CGH) assays.
PMCID: PMC3536097  PMID: 23064340
13.  The plasticity of the grapevine berry transcriptome 
Genome Biology  2013;14(6):r54.
Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function of its environment. These phenotypic variations are attributable to the effect of the environment on the expression and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera cultivar Corvina through 3 consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy.
Most of the berry transcriptome clustered by year of growth rather than common environmental conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11 vineyards during 1 growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in ontology categories such as transcription factors, translation, transport, and secondary metabolism. Specific plastic transcripts were associated with groups of vineyards sharing common viticulture practices or environmental conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression or similar modulation in all berries.
Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine and provide the first step towards the characterization of grapevine transcriptome plasticity under different agricultural systems.
PMCID: PMC3706941  PMID: 23759170
Phenotypic plasticity; Transcriptome; Grapevine
14.  Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: A proof of principle on type 2 diabetes 
Aging (Albany NY)  2013;5(5):373-385.
Genetic association studies of age-related, chronic human diseases often suffer from a lack of power to detect modest effects. Here we propose an alternative approach of including healthy centenarians as a more homogeneous and extreme control group. As a proof of principle we focused on type 2 diabetes (T2D) and assessed allelic/genotypic associations of 31 SNPs associated with T2D, diabetes complications and metabolic diseases and SNPs of genes relevant for telomere stability and age-related diseases. We hypothesized that the frequencies of risk variants are inversely correlated with decreasing health and longevity. We performed association analyses comparing diabetic patients and non-diabetic controls followed by association analyses with extreme phenotypic groups (T2D patients with complications and centenarians). Results drew attention to rs7903146 (TCF7L2 gene) that showed a constant increase in the frequencies of risk genotype (TT) from centenarians to diabetic patients who developed macro-complications and the strongest genotypic association was detected when diabetic patients were compared to centenarians (p_value = 9.066*10−7). We conclude that robust and biologically relevant associations can be obtained when extreme phenotypes, even with a small sample size, are compared.
PMCID: PMC3701112  PMID: 23804578
Type 2 diabetes; TCF7L2; centenarians; extreme phenotypes; age-related diseases
15.  De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity 
BMC Genomics  2013;14:41.
Plants such as grapevine (Vitis spp.) display significant inter-cultivar genetic and phenotypic variation. The genetic components underlying phenotypic diversity in grapevine must be understood in order to disentangle genetic and environmental factors.
We have shown that cDNA sequencing by RNA-seq is a robust approach for the characterization of varietal diversity between a local grapevine cultivar (Corvina) and the PN40024 reference genome. We detected 15,161 known genes including 9463 with novel splice isoforms, and identified 2321 potentially novel protein-coding genes in non-annotated or unassembled regions of the reference genome. We also discovered 180 apparent private genes in the Corvina genome which were missing from the reference genome.
The de novo assembly approach allowed a substantial amount of the Corvina transcriptome to be reconstructed, improving known gene annotations by robustly defining gene structures, annotating splice isoforms and detecting genes without annotations. The private genes we discovered are likely to be nonessential but could influence certain cultivar-specific characteristics. Therefore, the application of de novo transcriptome assembly should not be restricted to species lacking a reference genome because it can also improve existing reference genome annotations and identify novel, cultivar-specific genes.
PMCID: PMC3556335  PMID: 23331995
Transcriptomics; RNA-Seq; de novo assembly; Grape; Varietal diversity
16.  Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes 
BMC Genomics  2012;13:660.
Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control.
More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms.
The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel resistance inducers and for the analysis of environmental conditions that might affect induced resistance mechanisms.
PMCID: PMC3551682  PMID: 23173562
Induced resistance; Next generation sequencing; RNA-Seq; Transcriptomics; Gene expression; Vitis vinifera; Plant-pathogen interactions
17.  Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut 
PLoS ONE  2012;7(9):e44229.
Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.
PMCID: PMC3447821  PMID: 23028506
18.  Global Genome Transcription Profiling of Bifidobacterium bifidum PRL2010 under In Vitro Conditions and Identification of Reference Genes for Quantitative Real-Time PCR▿† 
Applied and Environmental Microbiology  2011;77(24):8578-8587.
Bifidobacteria have attracted significant scientific attention due to their perceived role as health-promoting microorganisms, although the genetics of the bacterial group is still underexplored. In this study, we investigated the transcriptome of Bifidobacterium bifidum PRL2010 during in vitro growth by microarray technology. When B. bifidum PRL2010 was grown in liquid broth, 425 of the 1,644 PRL2010 genes represented on the array were expressed in at least one of the three investigated growth phases, i.e., the lag, exponential, and stationary phases. These transcriptional analyses identified a core in vitro transcriptome encompassing 150 genes that are expressed in all phases. A proportion of these genes were further investigated as potential reference genes by quantitative real-time reverse transcription-PCR (qRT-PCR) assays. Their expression stability was evaluated under different growth conditions, which included cultivation on different carbon sources, exposure to environmental stresses (thermal, acidic, and osmotic), and growth phases. Our analyses validated six reference genes suitable for normalizing mRNA expression levels in qRT-PCR experiments applied to bifidobacteria.
PMCID: PMC3233107  PMID: 22003014
19.  Ability of Bifidobacterium breve To Grow on Different Types of Milk: Exploring the Metabolism of Milk through Genome Analysis ▿  
Applied and Environmental Microbiology  2011;77(20):7408-7417.
We have investigated the occurrence of bifidobacteria in human milk samples, and we provide evidence regarding the predominance of members of the Bifidobacterium breve species in this environment. Moreover, evaluation of the growth capabilities and transcriptomic analyses of one representative isolate of this species, i.e., B. breve 4L, on different milk types were performed.
PMCID: PMC3194849  PMID: 21856831
20.  Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses 
BMC Plant Biology  2011;11:114.
Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection.
A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.
Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.
A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.
A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport.
This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.
PMCID: PMC3170253  PMID: 21838877
21.  Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis 
BMC Genomics  2011;12:122.
Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations.
Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains.
Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response.
We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races.
Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981.
PMCID: PMC3048547  PMID: 21338485
22.  Characterization of the Serpin-Encoding Gene of Bifidobacterium breve 210B▿ †  
Applied and Environmental Microbiology  2010;76(10):3206-3219.
Members of the serpin (serine protease inhibitor) superfamily have been identified in higher multicellular eukaryotes, as well as in bacteria, although examination of available genome sequences has indicated that homologs of the bacterial serpin-encoding gene (ser) are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least 5, and perhaps up to 9, of the 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria produce serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which encompasses a number of genes whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, microarray, reverse transcription-PCR (RT-PCR), and quantitative real-time PCR (qRT-PCR) analyses revealed that a 3.5-kb polycistronic mRNA encompassing the ser210B operon with a single transcriptional start site is strongly induced following treatment of B. breve 210B cultures with some proteases. Interestingly, transcription of other bifidobacterial ser homologs appears to be triggered by different proteases.
PMCID: PMC2869134  PMID: 20348296
23.  The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation 
BMC Plant Biology  2010;10:163.
High levels of ascorbic acid (AsA) in tomato fruits provide health benefits for humans and also play an important role in several aspects of plant life. Although AsA metabolism has been characterized in detail, the genetic mechanisms controlling AsA accumulation in tomatoes are poorly understood. The transcriptional control of AsA levels in fruits can be investigated by combining the advanced genetic and genomic resources currently available for tomato. A comparative transcriptomic analysis of fruit tissues was carried out on an introgression line containing a QTL promoting AsA accumulation in the fruit, using a parental cultivar with lower AsA levels as a reference.
Introgression line IL 12-4 (S. pennellii in a S. lycopersicum background) was selected for transcriptomic analysis because it maintained differences in AsA levels compared to the parental genotypes M82 and S. pennellii over three consecutive trials. Comparative microarray analysis of IL 12-4 and M82 fruits over a 2-year period allowed 253 differentially-expressed genes to be identified, suggesting that AsA accumulation in IL 12-4 may be caused by a combination of increased metabolic flux and reduced utilization of AsA. In particular, the upregulation of a pectinesterase and two polygalacturonases suggests that AsA accumulation in IL12-4 fruit is mainly achieved by increasing flux through the L-galactonic acid pathway, which is driven by pectin degradation and may be triggered by ethylene.
Based on functional annotation, gene ontology classification and hierarchical clustering, a subset of the 253 differentially-expressed transcripts was used to develop a model to explain the higher AsA content in IL 12-4 fruits in terms of metabolic flux, precursor availability, demand for antioxidants, abundance of reactive oxygen species and ethylene signaling.
PMCID: PMC3095297  PMID: 20691085
24.  General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species 
BMC Genomics  2010;11:117.
Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood.
Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways.
Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola.
PMCID: PMC2831845  PMID: 20167053
25.  Correction: High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera 
BMC Genomics  2010;11:109.
The version of this article published in BMC Genomics 2009, 10:558, contains data in Table 1 which are now known to be unreliable, and an illustration, in Figure 1, of unusual miRNA processing events predicted by these unreliable data. In this full-length correction, new data replace those found to be unreliable, leading to a more straightforward interpretation without altering the principle conclusions of the study. Table 1 and associated methods have been corrected, Figure 1 deleted, supplementary file 1 added, and modifications made to the sections "Deep sequencing of small RNAs from grapevine leaf tissue" and "Microarray analysis of miRNA expression". The editors and authors regret the inconvenience caused to readers by premature publication of the original paper.
MicroRNAs are short (~21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families.
Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts.
Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.
PMCID: PMC2831844  PMID: 20152027

Results 1-25 (31)