PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Davis, graber")
1.  Characteristics and Predictors of Missed Opportunities in Lung Cancer Diagnosis: An Electronic Health Record–Based Study 
Journal of Clinical Oncology  2010;28(20):3307-3315.
Purpose
Understanding delays in cancer diagnosis requires detailed information about timely recognition and follow-up of signs and symptoms. This information has been difficult to ascertain from paper-based records. We used an integrated electronic health record (EHR) to identify characteristics and predictors of missed opportunities for earlier diagnosis of lung cancer.
Methods
Using a retrospective cohort design, we evaluated 587 patients of primary lung cancer at two tertiary care facilities. Two physicians independently reviewed each case, and disagreements were resolved by consensus. Type I missed opportunities were defined as failure to recognize predefined clinical clues (ie, no documented follow-up) within 7 days. Type II missed opportunities were defined as failure to complete a requested follow-up action within 30 days.
Results
Reviewers identified missed opportunities in 222 (37.8%) of 587 patients. Median time to diagnosis in cases with and without missed opportunities was 132 days and 19 days, respectively (P < .001). Abnormal chest x-ray was the clue most frequently associated with type I missed opportunities (62%). Follow-up on abnormal chest x-ray (odds ratio [OR], 2.07; 95% CI, 1.04 to 4.13) and completion of first needle biopsy (OR, 3.02; 95% CI, 1.76 to 5.18) were associated with type II missed opportunities. Patient adherence contributed to 44% of patients with missed opportunities.
Conclusion
Preventable delays in lung cancer diagnosis arose mostly from failure to recognize documented abnormal imaging results and failure to complete key diagnostic procedures in a timely manner. Potential solutions include EHR-based strategies to improve recognition of abnormal imaging and track patients with suspected cancers.
doi:10.1200/JCO.2009.25.6636
PMCID: PMC2903328  PMID: 20530272
2.  Provider management strategies of abnormal test result alerts: a cognitive task analysis 
Objective
Electronic medical records (EMRs) facilitate abnormal test result communication through “alert” notifications. The aim was to evaluate how primary care providers (PCPs) manage alerts related to critical diagnostic test results on their EMR screens, and compare alert-management strategies of providers with high versus low rates of timely follow-up of results.
Design
28 PCPs from a large, tertiary care Veterans Affairs Medical Center (VAMC) were purposively sampled according to their rates of timely follow-up of alerts, determined in a previous study. Using techniques from cognitive task analysis, participants were interviewed about how and when they manage alerts, focusing on four alert-management features to filter, sort and reduce unnecessary alerts on their EMR screens.
Results
Provider knowledge of alert-management features ranged between 4% and 75%. Almost half (46%) of providers did not use any of these features, and none used more than two. Providers with higher versus lower rates of timely follow-up used the four features similarly, except one (customizing alert notifications). Providers with low rates of timely follow-up tended to manually scan the alert list and process alerts heuristically using their clinical judgment. Additionally, 46% of providers used at least one workaround strategy to manage alerts.
Conclusion
Considerable heterogeneity exists in provider use of alert-management strategies; specific strategies may be associated with lower rates of timely follow-up. Standardization of alert-management strategies including improving provider knowledge of appropriate tools in the EMR to manage alerts could reduce the lack of timely follow-up of abnormal diagnostic test results.
doi:10.1197/jamia.M3200
PMCID: PMC2995633  PMID: 20064805
medical records systems; computerized; task performance and analysis; diagnostic errors/classification; primary healthcare; software
3.  Improving outpatient safety through effective electronic communication: a study protocol 
Background
Health information technology and electronic medical records (EMRs) are potentially powerful systems-based interventions to facilitate diagnosis and treatment because they ensure the delivery of key new findings and other health related information to the practitioner. However, effective communication involves more than just information transfer; despite a state of the art EMR system, communication breakdowns can still occur. [1-3] In this project, we will adapt a model developed by the Systems Engineering Initiative for Patient Safety (SEIPS) to understand and improve the relationship between work systems and processes of care involved with electronic communication in EMRs. We plan to study three communication activities in the Veterans Health Administration's (VA) EMR: electronic communication of abnormal imaging and laboratory test results via automated notifications (i.e., alerts); electronic referral requests; and provider-to-pharmacy communication via computerized provider order entry (CPOE).
Aim
Our specific aim is to propose a protocol to evaluate the systems and processes affecting outcomes of electronic communication in the computerized patient record system (related to diagnostic test results, electronic referral requests, and CPOE prescriptions) using a human factors engineering approach, and hence guide the development of interventions for work system redesign.
Design
This research will consist of multiple qualitative methods of task analysis to identify potential sources of error related to diagnostic test result alerts, electronic referral requests, and CPOE; this will be followed by a series of focus groups to identify barriers, facilitators, and suggestions for improving the electronic communication system. Transcripts from all task analyses and focus groups will be analyzed using methods adapted from grounded theory and content analysis.
doi:10.1186/1748-5908-4-62
PMCID: PMC2761849  PMID: 19781075

Results 1-3 (3)