PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces 
BMC Oral Health  2014;14:75.
Background
A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated.
Methods
The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium.
Results
SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells.
Conclusion
Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to abutment surfaces in vivo.
doi:10.1186/1472-6831-14-75
PMCID: PMC4083866  PMID: 24952379
Oral keratinocytes; Gingival fibroblasts; Cell attachment; Dental implant; Surface modification; Oral bacteria
2.  Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii 
Microbiology  2009;155(Pt 6):1977-1988.
Surface adhesion plays an essential part in the survival of the commensal organism Streptococcus gordonii in the oral cavity as well as during opportunistic infections such as endocarditis. At least two types of cell surface protein involved in adhesion are found on the surface of Gram-positive bacteria: those anchored via an LPXTG motif by the enzyme sortase A (SrtA) and those associated with the cell surface by, as yet, unknown mechanisms. In srtA− mutants, LPXTG-containing proteins have been shown to be released rather than cross-linked to the cell wall. We have therefore used 2D gel electrophoresis of released proteins from an srtA− mutant as well as the wild-type strain, followed by peptide identification by MS, to identify a set of novel proteins predicted to be present on the surface of S. gordonii DL1. This includes two large LPXTG-linked proteins (SGO_0707 and SGO_1487), which both contain tandemly repeated sequences similar to those present in known fibrillar adhesins. A 5′-nucleotidase and a protein with a putative collagen-binding domain, both containing LPXTG motifs, were also identified. Anchorless proteins with known chaperone, stress response and elongation factor functions, apparently responsible for bacterial binding to keratinocytes and saliva-coated surfaces in the absence of the LPXTG-linked adhesins, were also associated with the cell surface. These data reveal a range of proteins to be present on the S. gordonii DL1 cell surface, the expression of which plays an important role in adhesion to epithelia and which represent likely candidates for novel virulence factors in S. gordonii.
doi:10.1099/mic.0.027854-0
PMCID: PMC2888288  PMID: 19383683
3.  Bacteria on Catheters in Patients Undergoing Peritoneal Dialysis 
♦ Background: Peritonitis is the leading cause of morbidity for peritoneal dialysis (PD) patients, and microbial biofilms have previously been identified on catheters from infected patients. However, few studies of catheters from patients without clinical signs of infection have been undertaken. The aim of the present study was to investigate the extent to which bacteria are present on catheters from PD patients with no symptoms of infection.
♦ Methods: Microbiologic culturing under aerobic and anaerobic conditions and confocal laser scanning microscopy were used to determine the distribution of bacteria on PD catheters from 15 patients without clinical signs of infection and on catheters from 2 infected patients. The 16S rRNA gene sequencing technique was used to identify cultured bacteria.
♦ Results: Bacteria were detected on 12 of the 15 catheters from patients without signs of infection and on the 2 catheters from infected patients. Single-species and mixed-microbial communities containing up to 5 species were present on both the inside and the outside along the whole length of the colonized catheters. The bacterial species most commonly found were the skin commensals Staphylococcus epidermidis and Propionibacterium acnes, followed by S. warneri and S. lugdunensis. The strains of these micro-organisms, particularly those of S. epidermidis, varied in phenotype with respect to their tolerance of the major classes of antibiotics.
♦ Conclusions: Bacteria were common on catheters from patients without symptoms of infection. Up to 4 different bacterial species were found in close association and may represent a risk factor for the future development of peritonitis in patients hosting such micro-organisms.
doi:10.3747/pdi.2011.00320
PMCID: PMC3598254  PMID: 22855889
Biofilm; 16S rRNA gene sequencing; anaerobic culture; confocal microscopy
4.  Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms 
BMC Oral Health  2013;13:43.
Background
Mucosal surfaces are coated with layers of mucus gel that protect the underlying tissues and promote colonization by members of the commensal microflora. Lactobacillus fermentum is a common inhabitant of the oral cavity, gastrointestinal and reproductive tracts and is one of the most important lactic acid bacteria contributing to the formation of a healthy intestinal microflora. We have investigated the proteolytic activity in L. fermentum in response to interactions with the MUC5B mucin, which is a major component of mucus gels at sites colonized by this micro-organism.
Methods
Biofilms of Lactobacillus fermentum were established in mini-flow cells in the presence or absence of human salivary MUC5B. The proteolytic activity of biofilm cells was examined in a confocal scanning laser microscope with a fluorescent protease substrate. Degradation of MUC5B by L. fermentum was analysed using SDS-PAGE followed by Western blotting with antisera raised against the MUC5B peptide. Cell surface proteins differentialy expressed in a MUC5B-rich environment were identified with the aid of comparative two-dimensional electrophoresis followed by LC-MS/MS.
Results
Lactobacillus fermentum adhered well to surfaces coated with MUC5B mucin and in biofilms of L. fermentum formed in a MUC5B environment, the proportion of proteolytically-active cells (47 ± 0.6% of the population), as shown by cleavage of a fluorescent casein substrate, was significantly greater (p < 0.01) than that in biofilms formed in nutrient broth (0.4 ± 0.04% of the population). Thus, the presence of MUC5B mucins enhanced bacterial protease activity. This effect was mainly attributable to contact with surface-associated mucins rather than those present in the fluid phase. Biofilms of L. fermentum were capable of degrading MUC5B mucins suggesting that this complex glycoprotein can be exploited as a nutrient source by the bacteria.
Comparison of the surface proteomes of biofilm cells of L. fermentum in a MUC5B environment with those in nutrient broth using two-dimensional electrophoresis and mass spectroscopy, showed that the enhanced proteolytic activity was associated with increased expression of a glycoprotease; O-sialoglycoprotein endopeptidase, as well as chaperone proteins such as DnaK and trigger factor.
Conclusions
Adhesion to mucin-coated surfaces leads to a shift towards a more protease-active phenotype within L. fermentum biofilms and proteases produced within the biofilms can degrade MUC5B mucins. The enhanced proteolytic activity was associated with an increase in O-sialoglycoprotein endopeptidase on the cell surface. We propose that the upregulation of chaperone proteins in the mucin environment may contribute to the protease-active phenotype through activation of the glycopeptidase. This would represent one way for commensal lactobacilli e.g. L. fermentum to exploit complex substrates in their local environment in order to survive on mucosal surfaces.
doi:10.1186/1472-6831-13-43
PMCID: PMC3847627  PMID: 24010726
Lactobacilli; Proteolytic activity; Proteolysis; Mucus glycoprotein
5.  Salivary pellicles on titanium and their effect on metabolic activity in Streptococcus oralis 
BMC Oral Health  2013;13:32.
Background
Titanium implants in the oral cavity are covered with a saliva-derived pellicle to which early colonizing microorganisms such as Streptococcus oralis can bind. The protein profiles of salivary pellicles on titanium have not been well characterized and the proteins of importance for binding are thus unknown. Biofilm bacteria exhibit different phenotypes from their planktonic counterparts and contact with salivary proteins may be one factor contributing to the induction of changes in physiology. We have characterized salivary pellicles from titanium surfaces and investigated how contact with uncoated and saliva-coated titanium surfaces affects metabolic activity in adherent cells of S. oralis.
Methods
Salivary pellicles on smooth titanium surfaces were desorbed and these, as well as purified human saliva, were subjected to two-dimensional gel electrophoresis and mass spectroscopy. A parallel plate flow-cell model was used to study binding of a fresh isolate of S. oralis to uncoated and saliva-coated titanium surfaces. Metabolic activity was assessed using the BacLight CTC Vitality Kit and confocal scanning laser microscopy. Experiments were carried out in triplicate and the results analyzed using Student’s t-test or ANOVA.
Results
Secretory IgA, α-amylase and cystatins were identified as dominant proteins in the salivary pellicles. Selective adsorption of proteins was demonstrated by the enrichment of prolactin-inducible protein and absence of zinc-α2-glycoprotein relative to saliva. Adherence of S. oralis to titanium led to an up-regulation of metabolic activity in the population after 2 hours. In the presence of a salivary pellicle, this effect was enhanced and sustained over the following 22 hour period.
Conclusions
We have shown that adherence to smooth titanium surfaces under flow causes an up-regulation of metabolic activity in the early oral colonizer S. oralis, most likely as part of an adaptation to the biofilm mode of life. The effect was enhanced by a salivary pellicle containing sIgA, α-amylase, cystatins and prolactin-inducible protein which was, for the first time, identified as an abundant component of salivary pellicles on titanium. Further studies are needed to clarify the mechanisms underlying the effect of surface contact on metabolic activity as well as to identify the salivary proteins responsible for enhancing the effect.
doi:10.1186/1472-6831-13-32
PMCID: PMC3726426  PMID: 23866104
Bacteria; Microbial biofilm; Dental implant; Streptococci
6.  Structural and Functional Analysis of the N-terminal Domain of the Streptococcus gordonii Adhesin Sgo0707 
PLoS ONE  2013;8(5):e63768.
The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
doi:10.1371/journal.pone.0063768
PMCID: PMC3656908  PMID: 23691093
7.  Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation 
BMC Oral Health  2011;11:8.
Background
The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown.
Methods
We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy.
Results
Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth.
Conclusions
Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral commensal species tested than the other surfaces.
doi:10.1186/1472-6831-11-8
PMCID: PMC3061963  PMID: 21385428

Results 1-7 (7)