PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Dai, jinfeng")
1.  Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus 
PLoS ONE  2014;9(1):e84748.
Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.
doi:10.1371/journal.pone.0084748
PMCID: PMC3885614  PMID: 24416274
2.  Ixodes scapularis JAK-STAT Pathway Regulates Tick Antimicrobial Peptides, Thereby Controlling the Agent of Human Granulocytic Anaplasmosis 
The Journal of Infectious Diseases  2012;206(8):1233-1241.
Ixodes scapularis transmits the agent of human granulocytic anaplasmosis, among other pathogens. The mechanisms used by the tick to control Anaplasma phagocytophilum are not known. We demonstrate that the I. scapularis Janus kinase (JAK)–signaling transducer activator of transcription (STAT) pathway plays a critical role in A. phagocytophilum infection of ticks. The A. phagocytophilum burden increases in salivary glands and hemolymph when the JAK-STAT pathway is suppressed by RNA interference. The JAK-STAT pathway exerts its anti-Anaplasma activity presumably through STAT-regulated effectors. A salivary gland gene family encoding 5.3-kDa antimicrobial peptides is highly induced upon A. phagocytophilum infection of tick salivary glands. Gene expression and electrophoretic mobility shift assays showed that the 5.3-kDa antimicrobial peptide–encoding genes are regulated by tick STAT. Silencing of these genes increased A. phagocytophilum infection of tick salivary glands and transmission to mammalian host. These data suggest that the JAK-STAT signaling pathway plays a key role in controlling A. phagocytophilum infection in ticks by regulating the expression of antimicrobial peptides.
doi:10.1093/infdis/jis484
PMCID: PMC3448968  PMID: 22859824
3.  Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I 
Nature immunology  2010;11(10):912-919.
Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25–mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.
doi:10.1038/ni.1933
PMCID: PMC3712356  PMID: 20818395
4.  Guanylate-binding protein 1 participates in cellular antiviral response to dengue virus 
Virology Journal  2012;9:292.
Background
Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus found in tropical and sub-tropical regions around the world. Vaccines against DENV are currently unavailable. Guanylate-binding protein 1 (GBP1) is one of the Interferon (IFN) stimulated genes (ISGs) and has been shown important for host immune defense against various pathogens. However, the role of GBP1 during DENV infection remains unclarified. In this study, we evaluated the relevance of GBP1 to DENV infection in in vitro model.
Findings
Quantitative RT-PCR (qRT-PCR) and Western blot showed that the expression of mouse Gbp1 was dramatically upregulated in DENV-infected RAW264.7 cells. The intracellular DENV loads were significantly higher in Gbp1 silenced cells compared with controls. The expression levels of selective anti-viral cytokines were decreased in Gbp1 siRNA treated cells, while the transcription factor activity of NF-κB was impaired upon GBP1 silencing during infection.
Conclusions
Our data suggested that GBP1 plays an antiviral role during DENV infection.
doi:10.1186/1743-422X-9-292
PMCID: PMC3520834  PMID: 23186538
GBP1; DENV; Antiviral response; NF-κB
5.  IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis 
PLoS ONE  2012;7(8):e44153.
The Th17 cytokine, IL-22, regulates host immune responses to extracellular pathogens. Whether IL-22 plays a role in viral infection, however, is poorly understood. We report here that Il22−/− mice were more resistant to lethal West Nile virus (WNV) encephalitis, but had similar viral loads in the periphery compared to wild type (WT) mice. Viral loads, leukocyte infiltrates, proinflammatory cytokines and apoptotic cells in the central nervous system (CNS) of Il22−/− mice were also strikingly reduced. Further examination showed that Cxcr2, a chemokine receptor that plays a non-redundant role in mediating neutrophil migration, was significantly reduced in Il22−/− compared to WT leukocytes. Expression of Cxcr2 ligands, cxcl1 and cxcl5, was lower in Il22−/− brains than wild type mice. Correspondingly, neutrophil migration from the blood into the brain was attenuated following lethal WNV infection of Il22−/− mice. Our results suggest that IL-22 signaling exacerbates lethal WNV encephalitis likely by promoting WNV neuroinvasion.
doi:10.1371/journal.pone.0044153
PMCID: PMC3429482  PMID: 22952908
6.  A tick mannose-binding lectin inhibits the vertebrate complement cascade to enhance transmission of the Lyme disease agent 
Cell host & microbe  2011;10(2):136-146.
Summary
The Lyme disease agent, Borrelia burgdorferi, is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8 that reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade resulting in impaired neutrophil phagocytosis and chemotaxis, and diminished Borrelia lysis. Therefore, P8 was renamed the lectin complement pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks feeding on TSLPI-immunized B. burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization.
doi:10.1016/j.chom.2011.06.010
PMCID: PMC3170916  PMID: 21843870
MBL; lectin; ficolin; tick immunity; Borrelia burgdorferi; complement; vaccine
7.  A paradoxical role for neutrophils in the pathogenesis of West Nile virus 
The Journal of infectious diseases  2010;202(12):1804-1812.
Polymorphonuclear leukocytes (PMN) are key in innate immunity but their role in viral pathogenesis is incompletely understood. In infection with West Nile virus (WNV), we found that expression of two PMN-attracting chemokines, Cxcl1 and Cxcl2, was rapidly and dramatically elevated in macrophages. PMN are rapidly recruited to the site of WNV infection in mice and support efficient replication of WNV. Mice depleted of PMN after WNV inoculation developed higher viremia and earlier death compared to the control group, suggesting a protective role for PMN. In contrast, when PMN were depleted prior to infection with WNV, and in mice deficient in Cxcr2, a chemokine receptor gene, viremia was reduced and survival was enhanced or delayed. Collectively, these data suggest that PMN have a biphasic response to WNV infection, serving as a reservoir for replication and dissemination in early infection and later contributing to viral clearance.
doi:10.1086/657416
PMCID: PMC3053000  PMID: 21050124
Neutrophil; PMN; West Nile virus; chemokine; innate immunity
8.  A Paradoxical Role for Neutrophils in the Pathogenesis of West Nile Virus 
The Journal of Infectious Diseases  2010;202(12):1804-1812.
Polymorphonuclear leukocytes (PMNs) are key in innate immunity, but their role in viral pathogenesis is incompletely understood. In infection due to West Nile virus (WNV), we found that expression of 2 PMNattracting chemokines, Cxcl1 and Cxcl2, was rapidly and dramatically elevated in macrophages. PMNs are rapidly recruited to the site of WNV infection in mice and support efficient replication of WNV. Mice depleted of PMNs after WNV inoculation developed higher viremia and experienced earlier death, compared with the control group, which suggest a protective role for PMNs. In contrast, when PMNs were depleted prior to infection with WNV, and in mice deficient in Cxcr2 (a chemokine receptor gene), viremia was reduced and survival was enhanced. Collectively, these data suggest that PMNs have a biphasic response to WNV infection, serving as a reservoir for replication and dissemination in early infection and later contributing to viral clearance.
doi:10.1086/657416
PMCID: PMC3053000  PMID: 21050124
9.  ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro 
Virology Journal  2011;8:468.
Background
Dengue virus (DENV) and West Nile virus (WNV), close siblings of the Flaviviridae family, are the causative agents of Dengue hemorraghic shock or West Nile meningoencephalitis respectively. Vaccines against these two flaviviruses are currently unavailable. Interferon- Stimulated Gene 15 (ISG15), encoding an ubiquitin-like protein, is significantly induced by type I interferons or viral infections. Its roles in viral infections, however, vary with viruses, being either anti- or pro-viral. The exact roles of ISG15 in DENV and WNV infections remain unknown. In the current study, we evaluated the relevancies of ISG15 to DENV and WNV infection of a mouse macrophage cell line RAW264.7.
Findings
Quantitative PCR showed that mouse Isg15 was dramatically induced in DENV or WNV- infected RAW264.7 cells compared with non-infected cells. Isg15 and two other Jak-Stat related genes, Socs1 and Socs3, were silenced using siRNA mediated RNA interference. The intracellular DENV and WNV loads, as determined by quantitative PCR, were significantly higher in Isg15 silenced cells than control cells. The expression levels of interferon beta 1 (Ifnb1) were increased significantly in Isg15, Socs1 or Socs3 siRNA treated cells. Further investigation indicated that protein modification by ISG15, so called ISGylation, was significantly enhanced in DENV-infected cells compared to that in non-infected cells.
Conclusions
These findings suggest that ISG15 plays an anti-DENV/WNV function via protein ISGylation.
doi:10.1186/1743-422X-8-468
PMCID: PMC3215395  PMID: 21992229
ISG15; Dengue Virus; West Nile Virus; ISGylation
10.  Molecular Interactions that Enable Movement of the Lyme Disease Agent from the Tick Gut into the Hemolymph 
PLoS Pathogens  2011;7(6):e1002079.
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)2 fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent.
Author Summary
Lyme disease, the most common tick-borne illness in North America, is caused by Borrelia burgdorferi. Currently, spirochete and tick molecules that facilitate Borrelia migration within the vector, a key step for mammalian infection by tick-transmitted spirochetes, have not yet been identified. In this study, we show that F(ab)2 fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the spirochete migration from the tick gut into the hemolymph. Our results indicated that decreased hemolymph infection by blocking BBE31 resulted in lower salivary glands infection, which eventually attenuated murine infection by tick-transmitted B.burgdorferi. We also found that a tick gut protein TRE31 enables Borrelia movement by interacting with BBE31. This finding provides novel insights into the transmission of spirochete within the vector and provides potential vaccine targets to block the microbial life cycle within the vector.
doi:10.1371/journal.ppat.1002079
PMCID: PMC3111543  PMID: 21695244
11.  A C-type lectin collaborates with a CD45 phosphatase homologue to facilitate West Nile virus infection of mosquitoes 
Cell  2010;142(5):714-725.
SUMMARY
West Nile virus (WNV) is the most common arthropod-borne flavivirus in the United States; however, the vector ligand(s) that participate in infection are not known. We now show that an Aedes aegypti C-type lectin, mosGCTL-1, is induced by WNV, interacts with WNV in a calcium-dependent manner, and facilitates infection in vivo and in vitro. A mosquito homologue of human CD45 in A. aegypti, designated mosPTP-1, recruits mosGCTL-1 to enable viral attachment to cells, and to enhance viral entry. In vivo experiments show that mosGCTL-1 and mosPTP-1 function as part of the same pathway and are critical for WNV infection of mosquitoes. A similar phenomenon was also observed in Culex quinquefasciatus, a natural vector of WNV, further demonstrating that these genes participate in WNV infection. During the mosquito blood-feeding process, WNV infection was blocked in vivo with mosGCTL-1 antibodies. A molecular understanding of flaviviral-arthropod interactions may lead to strategies to control viral dissemination in nature.
doi:10.1016/j.cell.2010.07.038
PMCID: PMC2954371  PMID: 20797779
West Nile virus; C-type lectin; protein tyrosine phosphatases; mosquito; arthropod-based vaccine
12.  Tick Histamine Release Factor Is Critical for Ixodes scapularis Engorgement and Transmission of the Lyme Disease Agent 
PLoS Pathogens  2010;6(11):e1001205.
Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Effective vaccines against most tick-borne pathogens are not currently available. In this study, we characterized a tick histamine release factor (tHRF) from Ixodes scapularis and addressed the vaccine potential of this antigen in the context of tick engorgement and B. burgdorferi transmission. Results from western blotting and quantitative Reverse Transcription-PCR showed that tHRF is secreted in tick saliva, and upregulated in Borrelia burgdorferi-infected ticks. Further, the expression of tHRF was coincident with the rapid feeding phase of the tick, suggesting a role for tHRF in tick engorgement and concomitantly, for efficient B. burgdorferi transmission. Silencing tHRF by RNA interference (RNAi) significantly impaired tick feeding and decreased B. burgdorferi burden in mice. Interfering with tHRF by actively immunizing mice with recombinant tHRF, or passively transferring tHRF antiserum, also markedly reduced the efficiency of tick feeding and B. burgdorferi burden in mice. Recombinant tHRF was able to bind to host basophils and stimulate histamine release. Therefore, we speculate that tHRF might function in vivo to modulate vascular permeability and increase blood flow to the tick bite-site, facilitating tick engorgement. These findings suggest that blocking tHRF might offer a viable strategy to complement ongoing efforts to develop vaccines to block tick feeding and transmission of tick-borne pathogens.
Author Summary
Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Safe and effective vaccines against most tick-borne pathogens are not currently available. Typical vaccines target microbes directly, using extracts of the organism, or recombinant antigens as the immunogen; the transmission of tick-borne pathogens can also theoretically be prevented by interfering with the ability of ticks to feed on a mammalian host. In this study, we have characterized a putative histamine release factor (tHRF) from I. scapularis ticks, the predominant vector of B. burgdorferi, the agent of Lyme disease in North America. Our results suggested that tHRF is presented in tick saliva and critical for tick feeding; blocking tHRF markedly reduced the efficiency of tick feeding, and reduced the B. burgdorferi burden in mice. This finding provides novel insights into the molecular mechanisms of tick feeding and provides a potential vaccine target to block tick feeding and pathogen transmission.
doi:10.1371/journal.ppat.1001205
PMCID: PMC2991271  PMID: 21124826
13.  Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent 
Cell host & microbe  2009;6(5):482-492.
Traditionally, vaccines directly target a pathogen or microbial toxin. Lyme disease, caused by Borrelia burgdorferi, is a tick-borne illness for which a human vaccine is not currently available. B. burgdorferi binds a tick salivary protein, Salp15, during transmission from the vector, and this interaction facilitates infection of mice. We now show that Salp15-antiserum significantly protected mice from B. burgdorferi infection. Salp15-antiserum also markedly enhanced the protective capacity of antibodies against B. burgdorferi antigens, such as OspA or OspC. Mice actively immunized with Salp15 were also significantly protected from tick-borne Borrelia. In vitro assays showed that Salp15-antiserum increased the clearance of Salp15-coated B. burgdorferi by phagocytes, suggesting a mechanism of action. Vaccination with a vector molecule that a microbe requires for infection of the mammalian host suggests a new strategy for the prevention of Lyme disease, and this paradigm may be applicable to numerous arthropod-borne pathogens of medical importance.
doi:10.1016/j.chom.2009.10.006
PMCID: PMC2843562  PMID: 19917502
Lyme disease; Ixodes ticks; vaccine; Salp15; antibody
14.  Matrix Metalloproteinase 9 Facilitates West Nile Virus Entry into the Brain▿  
Journal of Virology  2008;82(18):8978-8985.
West Nile virus (WNV) is the most-common cause of mosquito-borne encephalitis in the United States. Invasion of the brain by WNV is influenced by viral and host factors, and the molecular mechanism underlying disruption of the blood-brain barrier is likely multifactorial. Here we show that matrix metalloproteinase 9 (MMP9) is involved in WNV entry into the brain by enhancing blood-brain barrier permeability. Murine MMP9 expression was induced in the circulation shortly after WNV infection, and the protein levels remained high even when viremia subsided. In the murine brain, MMP9 expression and its enzymatic activity were upregulated and MMP9 was shown to partly localize to the blood vessels. Interestingly, we also found that cerebrospinal fluid from patients suffering from WNV contained increased MMP9 levels. The peripheral viremia and expression of host cytokines were not altered in MMP9−/− mice; however, these animals were protected from lethal WNV challenge. The resistance of MMP9−/− mice to WNV infection correlated with an intact blood-brain barrier since immunoglobulin G, Evans blue leakage into brain, and type IV collagen degradation were markedly reduced in the MMP9−/− mice compared with their levels in controls. Consistent with this, the brain viral loads, selected inflammatory cytokines, and leukocyte infiltrates were significantly reduced in the MMP9−/− mice compared to their levels in wild-type mice. These data suggest that MMP9 plays a role in mediating WNV entry into the central nervous system and that strategies to interrupt this process may influence the course of West Nile encephalitis.
doi:10.1128/JVI.00314-08
PMCID: PMC2546894  PMID: 18632868
15.  ICAM-1 Participates in the Entry of West Nile Virus into the Central Nervous System▿  
Journal of Virology  2008;82(8):4164-4168.
Determining how West Nile virus crosses the blood-brain barrier is critical to understanding the pathogenesis of encephalitis. Here, we show that ICAM-1−/− mice are more resistant than control animals to lethal West Nile encephalitis. ICAM-1−/− mice have a lower viral load, reduced leukocyte infiltration, and diminished neuronal damage in the brain compared to control animals. This is associated with decreased blood-brain barrier leakage after viral infection. These data suggest that ICAM-1 plays an important role in West Nile virus neuroinvasion and that targeting ICAM-1 signaling may help control viral encephalitis.
doi:10.1128/JVI.02621-07
PMCID: PMC2292986  PMID: 18256150

Results 1-15 (15)