PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("cybulska, M")
1.  Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. 
Journal of Clinical Investigation  1996;98(10):2332-2345.
Eosinophil accumulation is a distinctive feature of lung allergic inflammation. Here, we have used a mouse model of OVA (ovalbumin)-induced pulmonary eosinophilia to study the cellular and molecular mechanisms for this selective recruitment of eosinophils to the airways. In this model there was an early accumulation of infiltrating monocytes/macrophages in the lung during the OVA treatment, whereas the increase in infiltrating T-lymphocytes paralleled the accumulation of eosinophils. The kinetics of accumulation of these three leukocyte subtypes correlated with the levels of mRNA expression of the chemokines monocyte chemotactic peptide-1/JE, eotaxin, and RANTES (regulated upon activation in normal T cells expressed and secreted), suggesting their involvement in the recruitment of these leukocytes. Furthermore, blockade of eotaxin with specific antibodies in vivo reduced the accumulation of eosinophils in the lung in response to OVA by half. Mature CD4+ T-lymphocytes were absolutely required for OVA-induced eosinophil accumulation since lung eosinophilia was prevented in CD4+-deficient mice. However, these cells were neither the main producers of the major eosinophilic chemokines eotaxin, RANTES, or MIP-1alpha, nor did they regulate the expression of these chemokines. Rather, the presence of CD4+ T cells was necessary for enhancement of VCAM-1 (vascular cell adhesion molecule-1) expression in the lung during allergic inflammation induced by the OVA treatment. In support of this, mice genetically deficient for VCAM-1 and intercellular adhesion molecule-1 failed to develop pulmonary eosinophilia. Selective eosinophilic recruitment during lung allergic inflammation results from a sequential accumulation of certain leukocyte types, particularly T cells, and relies on the presence of both eosinophilic chemoattractants and adhesion receptors.
PMCID: PMC507684  PMID: 8941651
2.  Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. 
Molecular Medicine  1995;1(4):447-456.
BACKGROUND: Reactive glucose-protein intermediates and advanced glycation endproducts (AGEs) are shown to colocalize with atheromatous lesions and to trigger complex chemical and biological responses through interaction with vessel wall elements. In diabetes and renal insufficiency, atherosclerosis is common, as are elevated levels of serum and vascular tissue AGEs. In the present study, AGEs supplied exogenously to normal animals elicited vascular and renal pathology. MATERIALS AND METHODS: Nondiabetic rabbits were injected intravenously with low doses of AGE-modified rabbit serum albumin (AGE-RSA, 16 mg/kg/day) for 4 months alone, or combined with a brief terminal period (2 weeks) of a cholesterol-rich diet (CRD) (2% cholesterol, 10% corn oil). AGE-RSA associated expression of vascular cell adhesion molecules and the development of atheromatous changes within the aorta were determined by immunohistology. RESULTS: The AGE content of aortic tissue increased by 2.2-fold in AGE-treated and by 3.2-fold in AGE + CRD-treated rabbits compared with normal saline-treated control rabbits (p < 0.025 and 0.001, respectively). Serum AGE levels in AGE groups rose up to 3-fold above the controls (p < 0.025 and p < 0.01). Ascending aortic sections from AGE-treated rabbits showed significant focal intimal proliferation, enhanced endothelial cell adhesion with infrequent intimal macrophages. oil-red-O staining lipid deposits and positive focal expression of vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), a pattern not observed in controls. These AGE-induced changes were markedly enhanced in animals cotreated with AGEs and a brief period of CRD. Lesions consisted of multifocal atheromas, containing foam cells, massive lipid droplets, and strong endothelial expression of VCAM-1 and ICAM-1 restricted to the affected areas. CONCLUSIONS: This study provides in vivo evidence for a causal relationship between chronic AGE accumulation and atherosclerosis independent of diabetic hyperglycemia, and suggests the utility of this animal model for the study of diabetic vascular disease in relation to glycation.
Images
PMCID: PMC2229997  PMID: 8521302
3.  Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. 
Journal of Clinical Investigation  1992;90(3):1138-1144.
Accumulation of monocyte-derived foam cells in focal areas of the arterial intima is one of the key events in early atherogenesis. We have examined the effect of lysophosphatidylcholine (lyso-PC; lysolecithin), a major phospholipid component of atherogenic lipoproteins, on the expression of adhesion molecules for monocytes, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), in cultured human and rabbit arterial endothelial cells. Cultured rabbit aortic endothelial cells treated with lyso-PC showed increased mRNA and cell surface expression of VCAM-1 and ICAM-1, which was associated with increased adhesion of monocytes and monocyte-like cells (THP-1, U937). In cultured human iliac artery endothelial cells, lyso-PC similarly induced both VCAM-1 and ICAM-1, whereas in umbilical vein endothelial cells only ICAM-1 was up-regulated. In all endothelial cells examined, the effect of lyso-PC on E-selectin (endothelial-leukocyte adhesion molecule-1) expression was negligible, thus differentiating this stimulus from other endothelial activators, such as interleukin 1, tumor necrosis factor, or lipopolysaccharide. We conclude that lyso-PC can selectively induce VCAM-1 and ICAM-1 in arterial endothelial cells and that this action, in addition to its monocyte chemoattractant activity, may play an important role in monocyte recruitment into atherosclerotic lesions.
Images
PMCID: PMC329976  PMID: 1381720
4.  Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1. 
Cell Regulation  1991;2(5):347-355.
Hematogenous metastasis involves adhesive interactions between blood-borne tumor cells and the vessel wall. By the use of in vitro assays, the adhesion of human melanoma, osteosarcoma, and kidney carcinoma (but not colon carcinoma) cell lines was shown to involve the cytokine-inducible endothelial cell surface protein inducible cell adhesion molecule 110 (INCAM-110) and the alpha 4 beta 1 integrin, molecules normally involved in endothelial-leukocyte interactions. Tumor adhesion to human endothelial cell monolayers was increased 1.9- to 8.2-fold by endothelial activation with the cytokine tumor necrosis factor (TNF) and inhibited by the anti-INCAM-110 monoclonal antibody (mAb) E1/6. Each of these tumor cells expressed members of the beta 1 integrin family of adhesion molecules, and antibodies to the alpha 4 and beta 1 integrin subunits inhibited tumor-endothelial adhesion (48-87% inhibition). A cDNA encompassing the three N-terminal Ig-like domains of vascular cell adhesion molecule 1 (VCAM-1) encoded a protein recognized by the anti-INCAM-110 mAb E1/6 and, when captured onto plastic, supported melanoma cell adhesion by an alpha 4 integrin-dependent mechanism. In contrast to mAb E1/6, a second anti-INCAM-110 mAb Hu8/4 neither inhibited adhesion to activated endothelium nor bound the first three Ig-like domains of INCAM-110/VCAM-1. These data indicate that the adherence of several human tumors to activated endothelium is mediated by an interaction of alpha 4 beta 1 integrin and the N-terminal Ig-like domains of endothelial INCAM-110/VCAM-1. Tumor acquisition of the alpha 4 integrin subunit and endothelial expression of INCAM-110 may affect the frequency and distribution of metastasis.
Images
PMCID: PMC361800  PMID: 1716464

Results 1-4 (4)