PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus 
The ISME Journal  2011;5(7):1095-1107.
Ostreococcus is a marine picophytoeukaryote for which culture studies indicate there are ‘high-light' and ‘low-light' adapted ecotypes. Representatives of these ecotypes fall within two to three 18S ribosomal DNA (rDNA) clades for the former and one for the latter. However, clade distributions and relationships to this form of niche partitioning are unknown in nature. We developed two quantitative PCR primer-probe sets and enumerated the proposed ecotypes in the Pacific Ocean as well as the subtropical and tropical North Atlantic. Statistical differences in factors such as salinity, temperature and NO3 indicated the ecophysiological parameters behind clade distributions are more complex than irradiance alone. Clade OII, containing the putatively low-light adapted strains, was detected at warm oligotrophic sites. In contrast, Clade OI, containing high-light adapted strains, was present in cooler mesotrophic and coastal waters. Maximal OI abundance (19 555±37 18S rDNA copies per ml) was detected in mesotrophic waters at 40 m depth, approaching the nutricline. OII was often more abundant at the deep chlorophyll maximum, when nutrient concentrations were significantly higher than at the surface (stratified euphotic zone waters). However, in mixed euphotic-zone water columns, relatively high numbers (for example, 891±107 18S rDNA copies per ml, Sargasso Sea, springtime) were detected at the surface. Both Clades OI and OII were found at multiple euphotic zone depths, but co-occurrence at the same geographical location appeared rare and was detected only in continental slope waters. In situ growth rate estimates using these primer-probes and better comprehension of physiology will enhance ecological understanding of Ostreococcus Clades OII and OI which appear to be oceanic and coastal clades, respectively.
doi:10.1038/ismej.2010.209
PMCID: PMC3146286  PMID: 21289652
picoeukaryotes; Ostreococcus; quantitative PCR; mamiellales; prasinophytes; niche differentiation
2.  Widespread distribution of a unique marine protistan lineage 
Environmental Microbiology  2008;10(6):1621-1634.
Unicellular eukaryotes (protists) are key components of marine food webs, yet knowledge of their diversity, distributions and respective ecologies is limited. We investigated uncultured protists using 18S rRNA gene sequencing, phylogenetic analyses, specific fluorescence in situ hybridization (FISH) probes and other methods. Because few studies have been conducted in warm water systems, we focused on two Atlantic subtropical regions, the Sargasso Sea and the Florida Current. Cold temperate waters were also sampled. Gene sequences comprising a unique eukaryotic lineage, herein termed ‘biliphytes’, were identified in most samples, whether from high- (30°C) or from low- (5°C) temperature waters. Sequences within this uncultured group have previously been retrieved from high latitudes. Phylogenetic analyses suggest biliphytes are a sister group to the cryptophytes and katablepharids, although the relationship is not statistically supported. Bootstrap-supported subclades were delineated but coherence was not obvious with respect to geography or physicochemical parameters. Unlike results from the initial publication on these organisms (therein ‘picobiliphytes’), we could not detect a nucleomorph, either visually, or by targeted primers. Phycobilin-like fluorescence associated with biliphyte-specific FISH-probed cells supports the hypothesis that they are photosynthetic. Our data indicate the biliphytes are nanoplanktonic in size, averaging 4.1 ± 1.0 × 3.5 ± 0.8 μm (±SD) for one probed group, and 3.5 ± 0.9 × 3.0 ± 0.9 μm (±SD) for another. We estimate biliphytes contributed 28 (±6)% of the phytoplanktonic biomass in tropical eddy-influenced surface waters. Given their broad thermal and geographic distribution, understanding the role these protists play in biogeochemical cycling within different habitats is essential.
doi:10.1111/j.1462-2920.2008.01580.x
PMCID: PMC2408648  PMID: 18341584

Results 1-2 (2)