Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo 
Nature Communications  2014;5:5244.
Mitochondrial dysfunction has been reported in both familial and sporadic Parkinson’s disease (PD). However, effective therapy targeting this pathway is currently inadequate. Recent studies suggest that manipulating the processes of mitochondrial fission and fusion has considerable potential for treating human diseases. To determine the therapeutic impact of targeting these pathways on PD, we used two complementary mouse models of mitochondrial impairments as seen in PD. We show here that blocking mitochondrial fission is neuroprotective in the PTEN-induced putative kinase-1 deletion (PINK1−/−) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models. Specifically, we show that inhibition of the mitochondrial fission GTPase dynamin-related protein-1 (Drp1) using gene-based and small-molecule approaches attenuates neurotoxicity and restores pre-existing striatal dopamine release deficits in these animal models. These results suggest Drp1 inhibition as a potential treatment for PD.
Mitochondrial dysfunction has been associated with Parkinson’s disease but effective therapies targeting this pathway are yet to be developed. Here the authors show that inhibition of the mitochondrial fission protein Drp-1 using genetic or small-molecule approaches in mouse models of the disease, leads to improvements in the pathology.
PMCID: PMC4223875  PMID: 25370169
2.  Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells 
Cyclic AMP inhibits vascular smooth muscle cell (VSMC) proliferation which is important in the aetiology of numerous vascular diseases. The anti-mitogenic properties of cAMP in VSMC are dependent on activation of protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), but the mechanisms are unclear.
Methods and results
Selective agonists of PKA and EPAC synergistically inhibited Egr1 expression, which was essential for VSMC proliferation. Forskolin, adenosine, A2B receptor agonist BAY60-6583 and Cicaprost also inhibited Egr1 expression in VSMC but not in endothelial cells. Inhibition of Egr1 by cAMP was independent of cAMP response element binding protein (CREB) activity but dependent on inhibition of serum response element (SRE) activity. SRF binding to the Egr1 promoter was not modulated by cAMP stimulation. However, Egr1 expression was dependent on the SRF co-factors Elk1 and 4 but independent of MAL. Inhibition of SRE-dependent Egr1 expression was due to synergistic inhibition of Rac1 activity by PKA and EPAC, resulting in rapid cytoskeleton remodelling and nuclear export of ERK1/2. This was associated with de-phosphorylation of the SRF co-factor Elk1.
cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression. This occurs, at least in part, via inhibition of Rac1 activity leading to rapid actin-cytoskeleton remodelling, nuclear export of ERK1/2, impaired Elk1-phosphorylation and inhibition of SRE activity. This identifies one of the earliest mechanisms underlying the anti-mitogenic effects of cAMP in VSMC but not in endothelial cells, making it an attractive target for selective inhibition of VSMC proliferation.
•cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression.•PKA and Epac synergise to inhibit Egr1 expression.•cAMP-mediated inhibition of Egr1 is cell-type specific.•cAMP inhibits SRE-dependent Egr1 transcription.•cAMP inhibits Egr1 via nuclear export of ERK1/2 and de-phosphorylation of Elk1.
PMCID: PMC4051994  PMID: 24534707
Zif268; Early growth response gene 1; Exchange protein activated by cAMP; 3'-5'-Cyclic adenosine monophosphate; Serum response factor
3.  Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study 
Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future.
PMCID: PMC4128998  PMID: 25120763
Unclassified renal cell carcinoma; comparative genomic hybridization; exon GeneChip; chromosome imbalance; gene mutation
4.  Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9 
BMB Reports  2014;47(5):262-267.
Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol- 3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPAinduced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-κB-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of IκB-α induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-κB activation, and subsequent induction of MMP-9 mRNA. [BMB Reports 2014; 47(5): 262-267]
PMCID: PMC4163862  PMID: 24286317
Bis; Glioma; Invasion; MMP-9; NF-κB
5.  Lysophosphatidic acid induces increased BACE1 expression and Aβ formation 
Biochimica et biophysica acta  2012;1832(1):29-38.
The abnormal production and accumulation of β-amyloid peptide (Aβ), which is produced from amyloid precursor protein (APP) by the sequential actions of β-secretase and γ-secretase, are thought to be the initial causative events in the development of Alzheimer’s disease (AD). Accumulating evidence suggests that vascular factors play an important role in the pathogenesis of AD. Specifically, studies have suggested that one vascular factor in particular, oxidized low density lipoprotein (oxLDL), may play an important role in regulating Aβ formation in AD. However, the mechanism by which oxLDL modulates Aβ formation remains elusive. In this study, we report several new findings that provide biochemical evidence suggesting that the cardiovascular risk factor oxLDL may contribute to Alzheimer’s disease by increasing Aβ production. First, we found that lysophosphatidic acid (LPA), the most bioactive component of oxLDL induces increased production of Aβ. Second, our data strongly indicate that LPA induces increased Aβ production via upregulating β-secretase expression. Third, our data strongly support the notion that different isoforms of protein kinase C (PKC) may play different roles in regulating APP processing. Specifically, most PKC members, such as PKCα, PKCβ, and PKCε, are implicated in regulating α-secretase-mediated APP processing; however, PKCδ, a member of the novel PKC subfamily, is involved in LPA-induced upregulation of β-secretase expression and Aβ production. These findings may contribute to a better understanding of the mechanisms by which the cardiovascular risk factor oxLDL is involved in Alzheimer’s disease.
PMCID: PMC3518696  PMID: 23036978
Alzheimer’s disease; Lysophosphatidic acid; Oxidized LDL; β-secretase; Beta-amyloid peptide; Amyloid precursor protein
6.  Pen-2 is dispensable for endoproteolysis of presenilin 1, and nicastrin-Aph subcomplex is important for both γ-secretase assembly and substrate recruitment 
Journal of neurochemistry  2012;123(5):837-844.
γ-secretase is a protease complex with at least four components: presenilin, nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (Pen-2). In this study, using knockout cell lines and small interfering RNA technology, our data demonstrated that the disappeared presenilin 1 C-terminal fragment (PS1C) caused by knockdown of pen-2 or knockout of NCT or Aph-1 was recovered by the addition of proteasome inhibitors, indicating that Pen-2, as well as NCT and Aph-1α , is dispensable for presenilin endoproteolysis. Our data also demonstrate that the formation of the nicastrin-Aph-1 subcomplex plays not only an important role in γ-secretase complex assembly but also in recruiting substrate C-terminal fragment of amyloid precursor protein generated by β-cleavage (CTFβ). Ablating any one component resulted in the instability of other components of the γ-secretase complex, and the presence of all three of the other components is required for full maturation of NCT.
PMCID: PMC3509485  PMID: 22973949
Alzheimer’s disease; gamma-secretase; presenilin; Pen-2; APP
7.  Proteomic-Based Insight into Malpighian Tubules of Silkworm Bombyx mori 
PLoS ONE  2013;8(9):e75731.
Malpighian tubules (MTs) are highly specific organs of arthropods (Insecta, Myriapoda and Arachnida) for excretion and osmoregulation. In order to highlight the important genes and pathways involved in multi-functions of MTs, we performed a systematic proteomic analysis of silkworm MTs in the present work. Totally, 1,367 proteins were identified by one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry, and as well as by Trans Proteomic Pipeline (TPP) and Absolute protein expression (APEX) analyses. Forty-one proteins were further identified by two-dimensional gel electrophoresis. Some proteins were revealed to be significantly associated with various metabolic processes, organic solute transport, detoxification and innate immunity. Our results might lay a good foundation for future functional studies of MTs in silkworm and other lepidoptera.
PMCID: PMC3787086  PMID: 24098719
8.  Impaired Mitochondrial Dynamics and Nrf2 Signaling Contribute to Compromised Responses to Oxidative Stress in Striatal Cells Expressing Full-Length Mutant Huntingtin 
PLoS ONE  2013;8(3):e57932.
Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdhQ111/Q111 cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdhQ7/Q7 cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdhQ111/Q111 cells. Oxidative stress leads to dramatic increases in the number of STHdhQ111/Q111 cells containing swollen mitochondria, while STHdhQ7/Q7 cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdhQ111/Q111 cells. Nrf2 expression does not differ between the two cell types, but STHdhQ111/Q111 cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdhQ111/Q111 cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdhQ7/Q7 cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdhQ111/Q111 cells.
PMCID: PMC3585875  PMID: 23469253
9.  Decreased Extracellular Adenosine Levels Lead to Loss of Hypoxia-Induced Neuroprotection after Repeated Episodes of Exposure to Hypoxia 
PLoS ONE  2013;8(2):e57065.
Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs) is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC) or 6 days (E6d HPC). Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO) was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF) regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC). Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1). An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection.
PMCID: PMC3578825  PMID: 23437309
10.  Residues at P2-P1 positions of ε- and ζ-cleavage sites are important in formation of beta-amyloid peptide 
Neurobiology of disease  2009;36(3):453-460.
Most of the Alzheimer’s disease (AD)-linked mutations in amyloid precursor protein (APP), which cause abnormal production of β-amyloid (Aβ), are localized at the major β-secretase- and γ-secretase cleavage sites. In this study, using an APP-knockout mouse neuronal cell line, our data demonstrated that at the P2-P1 positions of the ε-cleavage site at Aβ49 and the ζ-cleavage site at Aβ46, aromatic amino acids caused a strong reduction in total Aβ. On the other hand, residues with a long side chain caused a decrease in Aβ40 and a concomitant increase in Aβ42 and Aβ38. These findings indicate that the structures of the substituting residues at these key positions strongly determine the efficiency and preference of γ-secretase-mediated APP processing, which determines the ratio of different secreted Aβ species, a crucial factor in the disease development. Our findings provide new insight into the mechanisms of γ-secretase-mediated APP processing and, specifically, into why most AD-linked APP mutations are localized at major γ-secretase cleavage sites. This information may contribute to the development of methods of prevention and treatment of Alzheimer’s disease aimed at modulating γ-secretase activity.
PMCID: PMC3520095  PMID: 19716417
Alzheimer’s disease; β-amyloid; γ-secretase; APP; Intramembrane processing
Biochimica et biophysica acta  2008;1780(4):696-708.
Presenilin-associated protein (PSAP) was originally identified as a PS1-associated, PDZ domain protein. In a subsequent study, PSAP was found to be a mitochondrial apoptotic molecule. In this study, we cloned the PSAP gene and found that it is composed of 12 exons and localizes on chromosome 6. To better understand the structure and function of PSAP, we have generated a series of antibodies that recognize different regions of PSAP. Using these antibodies, we found that PSAP is expressed in four isoforms as a result of differential splicing of exon 8 in addition to the use of either the first or the second ATG codon as the start condon. We also found that all these isoforms are localized in the mitochondria and are pro-apoptotic. Furthermore, our data revealed that the PDZ domain and N-terminal fragment are required for the pro-apoptotic activity of PSAP.
PMCID: PMC3509497  PMID: 18291114
12.  Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA1, p42 and p38α 
Biochimica et biophysica acta  2007;1771(7):883-892.
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA1 receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of α, β, γ and δ, we have identified that the activation of ERK2 (p42) and p38α, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38α in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA1 mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA1, ERK2 and p38α are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.
PMCID: PMC3446792  PMID: 17531530
Lysophosphatidic acid; Receptors; Cell migration; Protein kinases and prostate cancer cells
13.  Lysophosphatidic acid effects on atherosclerosis and thrombosis 
Clinical lipidology  2011;6(4):413-426.
Lysophosphatidic acid (LPA) has been found to accumulate in high concentrations in atherosclerotic lesions. LPA is a bioactive phospholipid produced by activated platelets and formed during the oxidation of LDL. Accumulating evidence suggests that this lipid mediator may serve as an important risk factor for development of atherosclerosis and thrombosis. The role of LPA in atherogenesis is supported by the evidence that LPA: stimulates endothelial cells to produce adhesion molecules and chemoattractants; induces smooth muscle cells to produce inflammatory cytokines; stimulates smooth muscle cell dedifferentiation, proliferation, and migration; increases monocyte migration and decreases monocyte-derived cell emigration from the vessel wall; induces hypertension and vascular neointimal formation in vivo; and promotes plaque progression in a mouse atherosclerosis model. The role of LPA in thrombogenesis is supported by the evidence that LPA markedly induces the aggregation of platelets and the expression of tissue factor, which is the principal initiator of blood coagulation. Recent experimental data indicate that LPA is produced by specific enzymes and that LPA binds to and activates multiple G-protein-coupled receptors, leading to intracellular signaling. Therapeutics targeting LPA biosynthesis, metabolism and signaling pathways could be viable for prevention and treatment of atherosclerosis and thrombosis.
PMCID: PMC3230858  PMID: 22162980
atherosclerosis; lysophosphatidic acid; lysophosphatidic acid receptor; lysophospholipase D; thrombosis; vascular disease and therapeutics; vascular lesion
14.  Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma 
Chinese Journal of Cancer  2012;31(5):233-240.
Although gene therapy was regarded as a promising approach for glioma treatment, its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems. Mesenchymal stem cells (MSCs) have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. Therefore, in this study, we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus. We firstly compared the infectivity of type 3, type 5, and type 35 fiber-modified adenoviruses in MSCs. We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo. Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus. MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups. In conclusion, MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma, making it a potential therapeutic strategy for treating malignant glioma.
PMCID: PMC3777524  PMID: 22429494
Mesenchymal stem cell; replication-competent adenovirus; gene therapy; glioma
15.  Neurosteroid transport by the organic solute transporter OSTα-OSTβ 
Journal of neurochemistry  2010;115(1):220-233.
A variety of steroids, including pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulfate (DHEAS) are synthesized by specific brain cells, and are then delivered to their target sites, where they exert potent effects on neuronal excitability. The present results demonstrate that [3H]DHEAS and [3H]PREGS are relatively high affinity substrates for the organic solute transporter, OSTα–OSTβ, and that the two proteins that constitute this transporter are selectively localized to steroidogenic cells in the cerebellum and hippocampus, namely the Purkinje cells and cells in the CA region in both mouse and human brain. Analysis of Ostα and Ostβ mRNA levels in mouse Purkinje and hippocampal cells isolated via laser capture microdissection supported these findings. In addition, Ostα-deficient mice exhibited changes in serum dehydroepiandrosterone (DHEA) and DHEAS levels, and in tissue distribution of administered [3H]DHEAS. OSTα and OSTβ proteins were also localized to the zona reticularis of human adrenal gland, the major region for DHEAS production in the periphery. These results demonstrate that OSTα-OSTβ is localized to steroidogenic cells of the brain and adrenal gland, and that it modulates DHEA/DHEAS homeostasis, suggesting that it may contribute to neurosteroid action.
PMCID: PMC2939961  PMID: 20649839
Organic solute transporter; neurosteroid transport; pregnenolone sulfate; dehydroepiandrosterone sulfate; Purkinje cells; CA region of the hippocampus
16.  Reliable Detection of Paternal SNPs within Deletion Breakpoints for Non-Invasive Prenatal Exclusion of Homozygous α0-Thalassemia in Maternal Plasma 
PLoS ONE  2011;6(9):e24779.
Reliable detection of large deletions from cell-free fetal DNA (cffDNA) in maternal plasma is challenging, especially when both parents have the same deletion owing to a lack of specific markers for fetal genotyping. In order to evaluate the efficacy of a non-invasive prenatal diagnosis (NIPD) test to exclude α-thalassemia major that uses SNPs linked to the normal paternal α-globin allele, we established a novel protocol to reliably detect paternal SNPs within the (−−SEA) breakpoints and performed evaluation of the diagnostic potential of the protocol in a total of 67 pregnancies, in whom plasma samples were collected prior to invasive obstetrics procedures in southern China. A group of nine SNPs identified within the deletion breakpoints were scanned to select the informative SNPs in each of the 67 couples DNA by multiplex PCR based mini-sequencing technique. The paternally inherited SNP allele from cffDNA was detected by allele specific real-time PCR. A protocol for reliable detection of paternal SNPs within the (−−SEA) breakpoints was established and evaluation of the diagnostic potential of the protocol was performed in a total of 67 pregnancies. In 97% of the couples one or more different SNPs within the deletion breakpoint occurred between paternal and maternal alleles. Homozygosity for the (−−SEA) deletion was accurately excluded in 33 out of 67 (49.3%, 95% CI, 25.4–78.6%) pregnancies through the implementation of the protocol. Protocol was completely concordant with the traditional reference methods, except for two cases that exhibited uncertain results due to sample hemolysis. This method could be used as a routine NIPD test to exclude gross fetal deletions in α-thalassemia major, and could further be employed to test for other diseases due to gene deletion.
PMCID: PMC3182989  PMID: 21980356
17.  Lysophosphatidylcholine Activates a Novel PKD2-Mediated Signaling Pathway That Controls Monocyte Migration 
Monocyte activation and migration are crucial events in the development of atherosclerosis and other inflammatory diseases. This study examined the role of protein kinase D (PKD) in monocyte migration.
Method and Results
PKD2 is the predominant isoform of PKD expressed in monocytic THP-1 cells and primary human monocytes. Lysophosphatidylcholine (lysoPC), a prominent component of oxidized low density lipoprotein, induces rapid and marked PKD activation in these cells. Using multiple approaches, including dominant-negative mutants and small interfering RNA knock-down, we found that lysoPC-induced PKD2 activation was required for the activation of both ERK and p38 MAPK. p38 MAPK mediation of lysoPC-induced monocytic cell migration was reported previously; our results reveal that the lysoPC-induced PKD2-p38 pathway controls monocyte migration.
This study provides the first evidence that 1) lysoPC activates PKD, 2) PKD2 has a novel role in p38 activation, and 3) the PKD2-activated p38 pathway is responsible for lysoPC-induced migration of THP-1 cells and human monocytes. Thus, PKD is a novel and functional intracellular regulator in both lysoPC signaling and monocyte migration. These results suggest a new role for PKD2 in the development of atherosclerosis and other inflammatory diseases.
PMCID: PMC3073140  PMID: 19520973
protein kinase; signaling pathway; lysophosphatidylcholine; monocyte migration
18.  Bioelectrical Impedance May Predict Cell Viability During Ischemia and Reperfusion in Rat Liver 
Journal of Korean Medical Science  2010;25(4):577-582.
Ischemia and reperfusion (I/R) injury is a major cause of hepatic failure after liver surgery, but no method could monitor or predict it real-time during surgery. We measured bioelectrical impedance (BEI) and cell viability to assess the usefulness of BEI during I/R in rat liver. A 70% partial liver ischemia model was used. BEI was measured at various frequencies. Adenosine triphosphate (ATP) content, and palmitic acid oxidation rate were measured, and histological changes were observed in order to quantify liver cell viability. BEI changed significantly during ischemia at low frequency. In the ischemia group, BEI increased gradually during 60 min of ischemia and had a tendency to plateau thereafter. The ATP content decreased below 20% of the baseline level. In the I/R group, BEI recovered to near baseline level. After 24 hr of reperfusion, the ATP contents decreased to below 50% in 30, 60 and 120 min of ischemia and the palmitic acid metabolic rates decreased to 91%, 78%, and 74%, respectively, compared with normal liver. BEI may be a good tool for monitoring I/R during liver surgery. The liver is relatively tolerant to ischemia, however after reperfusion, liver cells may be damaged depending upon the duration of ischemia.
PMCID: PMC2844586  PMID: 20358001
Bioelectrical Impedance; Cell Survival; Ischemia; Reperfusion; ATP

Results 1-18 (18)