PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Hearing Loss and Hair Cell Death in Mice Given the Cholesterol-Chelating Agent Hydroxypropyl-β-Cyclodextrin 
PLoS ONE  2012;7(12):e53280.
Cyclodextrins are sugar compounds that are increasingly finding medicinal uses due to their ability to complex with hydrophobic molecules. One cyclodextrin in particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is used as a carrier to solubilize lipophilic drugs and is itself being considered as a therapeutic agent for treatment of Niemann-Pick Type C disease, due to its ability to mobilize cholesterol. Results from toxicological studies suggest that HPβCD is generally safe, but a recent study has found that it causes hearing loss in cats. Whether the hearing loss occurred via death of cochlear hair cells, rendering it permanent, was unexplored. In the present study, we examined peripheral auditory function and cochlear histology in mice after subcutaneous injection of HPβCD to test for hearing loss and correlate any observed auditory deficits with histological findings. On average, auditory brainstem response thresholds were elevated at 4, 16, and 32 kHz in mice one week after treatment with 8,000 mg/kg. In severely affected mice all outer hair cells were missing in the basal half of the cochlea. In many cases, surviving hair cells in the cochlear apex exhibited abnormal punctate distribution of the motor protein prestin, suggesting long term changes to membrane composition and integrity. Mice given a lower dose of 4,000 mg/kg exhibited hearing loss only after repeated doses, but these threshold shifts were temporary. Therefore, cyclodextrin-induced hearing loss was complex, involving cell death and other more subtle influences on cochlear physiology.
doi:10.1371/journal.pone.0053280
PMCID: PMC3532434  PMID: 23285273
2.  Localized Cell and Drug Delivery for Auditory Prostheses 
Hearing research  2008;242(1-2):117-131.
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
doi:10.1016/j.heares.2008.06.003
PMCID: PMC3073348  PMID: 18573323
Drug delivery; Auditory prostheses; Cochlear implant; Auditory Brainstem Implant; Hearing loss; Pharmaceuticals
3.  P2X antagonists inhibit styryl dye entry into hair cells 
Neuroscience  2009;161(4):1144-1153.
The styryl pyridinium dyes, FM1-43 and AM1-43, are fluorescent molecules that can permeate the mechanotransduction channels of hair cells, the sensory receptors of the inner ear. When these dyes are applied to hair cells, they enter the cytoplasm rapidly, resulting in a readily detectable increase in intracellular fluorescence that is often used as a molecular indication of mechanotransduction channel function. However, such dyes can also permeate the ATP receptor, P2X2. Therefore, we explored the contribution of P2X receptors to the loading of hair cells with AM1-43. The chick inner ear was found to express P2X receptors and to release ATP, similar to the inner ear of mammals, allowing for the endogenous stimulation of P2X receptors. The involvement of these receptors was evaluated pharmacologically, by exposing the sensory epithelium of the chick inner ear to 5 μM AM1-43 under different experimental conditions and measuring the fluorescence in hair cells after fixation of the tissue. Pre-exposure of the tissue to 5 mM EGTA for 15 minutes, which should eliminate most of the gating “tip links” of the mechanotransduction channels, deceased fluorescence by only 44%. In contrast, P2X receptor antagonists (PPADS, suramin, TNP-ATP, and d-tubocurarine) had greater effects on dye loading. PPADS, suramin, and TNP-ATP all decreased intracellular AM1-43 fluorescence in hair cells by at least 69% when applied at a concentration of 100 μM. The difference between d-tubocurarine-treated and control fluorescence was statistically insignificant when d-tubocurarine was applied at a concentration that blocks the mechanotransduction channel (200 μM). At a concentration that also blocks P2X2 receptors (2 mM), d-tubocurarine decreased dye loading by 72%. From these experiments, it appears that AM1-43 can enter hair cells through endogenously activated P2X receptors. Thus, the contribution of P2X receptors to dye entry must be considered when using styryl pyridinium dyes to detect hair cell mechanotransduction channel activity in the absence of explicit mechanical stimulation of stereocilia.
doi:10.1016/j.neuroscience.2009.02.076
PMCID: PMC2846836  PMID: 19272432
mechanotransduction; basilar papilla; auditory; AM1-43; FM1-43; pannexin
4.  Tonotopic Distribution of Short-Term Adaptation Properties in the Cochlear Nerve of Normal and Acoustically Overexposed Chicks 
Cochlear nerve adaptation is thought to result, at least partially, from the depletion of neurotransmitter stores in hair cells. Recently, neurotransmitter vesicle pools have been identified in chick tall hair cells that might play a role in adaptation. In order to understand better the relationship between adaptation and neurotransmitter release dynamics, short-term adaptation was characterized by using peristimulus time histograms of single-unit activity in the chick cochlear nerve. The adaptation function resulting from 100-ms pure tone stimuli presented at the characteristic frequency, +20 dB relative to threshold, was well described as a single exponential decay process with an average time constant of 18.6 ± 0.8 ms (mean ± SEM). The number of spikes contributed by the adapting part of the response increased tonotopically for characteristic frequencies up to ∼0.8 kHz. Comparison of the adaptation data with known physiological and anatomical hair cell properties suggests that depletion of the readily releasable pool is the basis of short-term adaptation in the chick. With this idea in mind, short-term adaptation was used as a proxy for assessing tall hair cell synaptic function following intense acoustic stimulation. After 48 h of exposure to an intense pure tone, the time constant of short-term adaptation was unaltered, whereas the number of spikes in the adapting component was increased at characteristic frequencies at and above the exposure frequency. These data suggest that the rate of readily releasable pool emptying is unaltered, but the neurotransmitter content of the pool is increased, by exposure to intense sound. The results imply that an increase in readily releasable pool size might be a compensatory mechanism ensuring the strength of the hair cell afferent synapse in the face of ongoing acoustic stress.
doi:10.1007/s10162-006-0061-8
PMCID: PMC2538420  PMID: 17200911
hair cell; single unit; auditory; exocytosis; synapse; afferent
5.  Evidence That Rapid Vesicle Replenishment of the Synaptic Ribbon Mediates Recovery from Short-Term Adaptation at the Hair Cell Afferent Synapse 
We have employed both in vitro patch clamp recordings of hair cell synaptic vesicle fusion and in vivo single unit recording of cochlear nerve activity to study, at the same synapse, the time course, control, and physiological significance of readily releasable pool dynamics. Exocytosis of the readily releasable pool was fast, saturating in less than 50 ms, and recovery was also rapid, regaining 95% of its initial amplitude following a 200-ms period of repolarization. Longer depolarizations (greater than 250 ms) yielded a second, slower kinetic component of exocytosis. Both the second component of exocytosis and recovery of the readily releasable pool were blocked by the slow calcium buffer, EGTA. Sound-evoked afferent synaptic activity adapted and recovered with similar time courses as readily releasable pool exhaustion and recovery. Comparison of readily releasable pool amplitude, capture distances of calcium buffers, and number of vesicles tethered to the synaptic ribbon suggested that readily releasable pool dynamics reflect the depletion of release-ready vesicles tethered to the synaptic ribbon and the reloading of the ribbon with vesicles from the cytoplasm. Thus, we submit that rapid recovery of the cochlear hair cell afferent fiber synapse from short-term adaptation depends on the timely replenishment of the synaptic ribbon with vesicles from a cytoplasmic pool. This apparent rapid reloading of the synaptic ribbon with vesicles underscores important functional differences between synaptic ribbons in the auditory and visual systems.
doi:10.1007/s10162-004-5003-8
PMCID: PMC2504567  PMID: 15675002
hair cell; exocytosis; adaptation; synaptic ribbon; synaptic vesicle; cochlea

Results 1-5 (5)