Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Classification of transient behaviours in a time-dependent toggle switch model 
BMC Systems Biology  2014;8:43.
Waddington’s epigenetic landscape is an intuitive metaphor for the developmental and evolutionary potential of biological regulatory processes. It emphasises time-dependence and transient behaviour. Nowadays, we can derive this landscape by modelling a specific regulatory network as a dynamical system and calculating its so-called potential surface. In this sense, potential surfaces are the mathematical equivalent of the Waddingtonian landscape metaphor. In order to fully capture the time-dependent (non-autonomous) transient behaviour of biological processes, we must be able to characterise potential landscapes and how they change over time. However, currently available mathematical tools focus on the asymptotic (steady-state) behaviour of autonomous dynamical systems, which restricts how biological systems are studied.
We present a pragmatic first step towards a methodology for dealing with transient behaviours in non-autonomous systems. We propose a classification scheme for different kinds of such dynamics based on the simulation of a simple genetic toggle-switch model with time-variable parameters. For this low-dimensional system, we can calculate and explicitly visualise numerical approximations to the potential landscape. Focussing on transient dynamics in non-autonomous systems reveals a range of interesting and biologically relevant behaviours that would be missed in steady-state analyses of autonomous systems. Our simulation-based approach allows us to identify four qualitatively different kinds of dynamics: transitions, pursuits, and two kinds of captures. We describe these in detail, and illustrate the usefulness of our classification scheme by providing a number of examples that demonstrate how it can be employed to gain specific mechanistic insights into the dynamics of gene regulation.
The practical aim of our proposed classification scheme is to make the analysis of explicitly time-dependent transient behaviour tractable, and to encourage the wider use of non-autonomous models in systems biology. Our method is applicable to a large class of biological processes.
PMCID: PMC4109741  PMID: 24708864
2.  Lack of tailless leads to an increase in expression variability in Drosophila embryos☆ 
Developmental Biology  2013;377(1):305-317.
Developmental processes are robust, or canalised: dynamic patterns of gene expression across space and time are regulated reliably and precisely in the presence of genetic and environmental perturbations. It remains unclear whether canalisation relies on specific regulatory factors (such as heat-shock proteins), or whether it is based on more general redundancy and distributed robustness at the network level. The latter explanation implies that mutations in many regulatory factors should exhibit loss of canalisation. Here, we present a quantitative characterisation of segmentation gene expression patterns in mutants of the terminal gap gene tailless (tll) in Drosophila melanogaster. Our analysis provides new insights into the dynamic mechanisms underlying gap gene regulation, and reveals significantly increased variability of gene expression in the mutant compared to the wild-type background. We show that both position and timing of posterior segmentation gene expression domains vary strongly from embryo-to-embryo in tll mutants. This variability must be caused by a vulnerability in the regulatory system which is hidden or buffered in the wild-type, but becomes uncovered by the deletion of tll. Our analysis provides evidence that loss of canalisation in mutants could be more widespread than previously thought.
► We present a quantitative analysis of spatial gene expression in Drosophila mutants. ► Dynamic gap domain shifts do not depend on expression of terminal gap genes or hb. ► Expression variability is greatly increased in a tll mutant background. ► This indicates de-canalisation (loss of developmental robustness) in the mutant. ► Such de-canalisation is a common phenomenon in mutants of developmental regulators.
PMCID: PMC3635121  PMID: 23333944
Drosophila embryogenesis; Segmentation gene network; Quantitative expression analysis; Pattern formation; Robustness/canalisation; Genetic capacitance
3.  Medium-Throughput Processing of Whole Mount In Situ Hybridisation Experiments into Gene Expression Domains 
PLoS ONE  2012;7(9):e46658.
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, “medium-throughput” pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
PMCID: PMC3460907  PMID: 23029561
4.  Efficient Reverse-Engineering of a Developmental Gene Regulatory Network 
PLoS Computational Biology  2012;8(7):e1002589.
Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms.
Author Summary
To better understand multi-cellular organisms we need a better and more systematic understanding of the complex regulatory networks that govern their development and evolution. However, this problem is far from trivial. Regulatory networks involve many factors interacting in a non-linear manner, which makes it difficult to study them without the help of computers. Here, we investigate a computational method, reverse engineering, which allows us to reconstitute real-world regulatory networks in silico. As a case study, we investigate the gap gene network involved in determining the position of body segments during early development of Drosophila. We visualise spatial gap gene expression patterns using in situ hybridisation and microscopy. The resulting embryo images are quantified to measure the position of expression domain boundaries. We then use computational models as tools to extract regulatory information from the data. We investigate what kind, and how much data are required for successful network inference. Our results reveal that much less effort is required for reverse-engineering networks than previously thought. This opens the possibility of investigating a large number of developmental networks using this approach, which in turn will lead to a more general understanding of the rules and principles underlying development in animals and plants.
PMCID: PMC3395622  PMID: 22807664
5.  Is RNA-dependent RNA polymerase essential for transposon control? 
BMC Systems Biology  2011;5:104.
Eukaryotes use RNA interference and RNA-based epigenetic regulation to control transposon activity. In the standard pathways of RNA-based transcriptional and post-transcriptional silencing the protein complex RNA-dependent RNA polymerase (RdRP) plays a crucial role. However, alternative pathways that bypass RdRP have recently been described. Hence two important questions are: is RdRP truly a necessary component for transposon control, and are the alternative RNA-based strategies also capable of controlling transposable elements?
We have studied the interplay between host RNAi pathways and transposons using mathematical models. We show that the canonical RdRP-based model controls transposons tightly, mainly via the feedback of cytoplasmic small RNA amplification. Next, we consider two variants lacking RdRP and instead employing antisense transcription of transposons. We show that transposon activity is also controlled by the alternative pathways, although cytoplasmic small RNA amplification is absent. Instead, control occurs in the nucleus, through a feedback in the epigenetic regulation.
Concluding, our models show that the control of transposon activity can be achieved by alternative pathways that lack RdRP and act through different feedback mechanisms. Thus, although RdRP activity is ubiquitous in eukaryotes, it need not be a general requirement for transposon control.
PMCID: PMC3155503  PMID: 21714914
6.  Evolution of resource cycling in ecosystems and individuals 
Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned?
We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves.
In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.
PMCID: PMC2698886  PMID: 19486519
7.  Evolution of Evolvability in Gene Regulatory Networks 
PLoS Computational Biology  2008;4(7):e1000112.
Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question.
An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time.
Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.
Author Summary
A cell receives signals both from its internal and external environment and responds by changing the expression of genes. In this manner the cell adjusts to heat, osmotic pressures and other circumstances during its lifetime. Over long timescales, the network of interacting genes and its regulatory actions also undergo evolutionary adaptation. Yet how do such networks evolve and become adapted?
In this paper we describe the study of a simple model of gene regulatory networks, focusing solely on evolutionary adaptation. We let a population of individuals evolve, while the external environment changes through time. To ensure evolution is the only source of adaptation, we do not provide the individuals with a sensor to the environment. We show that the interplay between the long-term process of evolution and short-term gene regulation dynamics leads to a striking increase in the efficiency of creating well-adapted offspring. Beneficial mutations become more frequent, nevertheless robustness to the majority of mutations is maintained. Thus we demonstrate a clear example of the evolution of evolvability.
PMCID: PMC2432032  PMID: 18617989

Results 1-7 (7)