PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (53)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  I'll Txt U if I Have a Problem: How the Société Canadienne du Cancer in Quebec Applied Behavior-Change Theory, Data Mining and Agile Software Development to Help Young Adults Quit Smoking 
PLoS ONE  2014;9(3):e91832.
Introduction
For many organizations, limited budgets and phased funding restrict the development of digital health tools. This problem is often exacerbated by the ever-increasing sophistication of technology and costs related to programming and maintenance. Traditional development methods tend to be costly and inflexible and not client centered. The purpose of this study is to analyze the use of Agile software development and outcomes of a three-phase mHealth program designed to help young adult Quebecers quit smoking.
Methods
In Phase I, literature reviews, focus groups, interviews, and behavior change theory were used in the adaption and re-launch of an existing evidence-based mHealth platform. Based on analysis of user comments and utilization data from Phase I, the second phase expanded the service to allow participants to live text-chat with counselors. Phase II evaluation led to the third and current phase, in which algorithms were introduced to target pregnant smokers, substance users, students, full-time workers, those affected by mood disorders and chronic disease.
Results
Data collected throughout the three phases indicate that the incremental evolution of the intervention has led to increasing numbers of smokers being enrolled while making functional enhancements. In Phase I (240 days) 182 smokers registered with the service. 51% (n = 94) were male and 61.5% (n = 112) were between the ages of 18–24. In Phase II (300 days), 994 smokers registered with the service. 51% (n = 508) were male and 41% (n = 403) were between the ages of 18–24. At 174 days to date 873 smokers have registered in the third phase. 44% (n = 388) were male and 24% (n = 212) were between the ages of 18–24.
Conclusions
Emerging technologies in behavioral science show potential, but do not have defined best practices for application development. In phased-based projects with limited funding, Agile appears to be a viable approach to building and expanding digital tools.
doi:10.1371/journal.pone.0091832
PMCID: PMC3960136  PMID: 24647098
2.  Determinants of Follow-Up Participation in the Internet-Based European Influenza Surveillance Platform Influenzanet 
Background
“Influenzanet” is a network of Internet-based platforms aimed at collecting real-time data for influenza surveillance in several European countries. More than 30,000 European volunteers participate every year in the study, representing one of the largest existing Internet-based multicenter cohorts. Each week during the influenza season, participants are asked to report their symptoms (if any) along with a set of additional questions.
Objective
Focusing on the first influenza season of 2011-12, when the Influenzanet system was completely harmonized within a common framework in Sweden, the United Kingdom, the Netherlands, Belgium, France, Italy, and Portugal, we investigated the propensity of users to regularly come back to the platform to provide information about their health status. Our purpose was to investigate demographic and behavioral factors associated with participation in follow-up.
Methods
By means of a multilevel analysis, we evaluated the association between regular participation during the season and sociodemographic and behavioral characteristics as measured by a background questionnaire completed by participants on registration.
Results
We found that lower participation in follow-up was associated with lower educational status (odds ratio [OR] 0.80, 95% CI 0.75-0.85), smoking (OR 0.64, 95% CI 0.59-0.70), younger age (OR ranging from 0.30, 95% CI 0.26-0.33 to 0.70, 95% CI 0.64-0.77), not being vaccinated against seasonal influenza (OR 0.77, 95% CI 0.72-0.84), and living in a household with children (OR 0.69, 95% CI 0.65-0.74). Most of these results hold when single countries are analyzed separately.
Conclusions
Given the opportunistic enrollment of self-selected volunteers in the Influenzanet study, we have investigated how sociodemographic and behavioral characteristics may be associated with follow-up participation in the Influenzanet cohort. The study described in this paper shows that, overall, the most important determinants of participation are related to education and lifestyle: smoking, lower education level, younger age, people living with children, and people who have not been vaccinated against seasonal influenza tend to have a lower participation in follow-up. Despite the cross-country variation, the main findings are similar in the different national cohorts, and indeed the results are found to be valid also when performing a single-country analysis. Differences between countries do not seem to play a crucial role in determining the factors associated with participation in follow-up.
doi:10.2196/jmir.3010
PMCID: PMC3967126  PMID: 24613818
participatory surveillance; Internet; influenza
3.  Metapopulation epidemic models with heterogeneous mixing and travel behaviour 
Background
Determining the pandemic potential of an emerging infectious disease and how it depends on the various epidemic and population aspects is critical for the preparation of an adequate response aimed at its control. The complex interplay between population movements in space and non-homogeneous mixing patterns have so far hindered the fundamental understanding of the conditions for spatial invasion through a general theoretical framework. To address this issue, we present an analytical modelling approach taking into account such interplay under general conditions of mobility and interactions, in the simplifying assumption of two population classes.
Methods
We describe a spatially structured population with non-homogeneous mixing and travel behaviour through a multi-host stochastic epidemic metapopulation model. Different population partitions, mixing patterns and mobility structures are considered, along with a specific application for the study of the role of age partition in the early spread of the 2009 H1N1 pandemic influenza.
Results
We provide a complete mathematical formulation of the model and derive a semi-analytical expression of the threshold condition for global invasion of an emerging infectious disease in the metapopulation system. A rich solution space is found that depends on the social partition of the population, the pattern of contacts across groups and their relative social activity, the travel attitude of each class, and the topological and traffic features of the mobility network. Reducing the activity of the less social group and reducing the cross-group mixing are predicted to be the most efficient strategies for controlling the pandemic potential in the case the less active group constitutes the majority of travellers. If instead traveling is dominated by the more social class, our model predicts the existence of an optimal across-groups mixing that maximises the pandemic potential of the disease, whereas the impact of variations in the activity of each group is less important.
Conclusions
The proposed modelling approach introduces a theoretical framework for the study of infectious diseases spread in a population with two layers of heterogeneity relevant for the local transmission and the spatial propagation of the disease. It can be used for pandemic preparedness studies to identify adequate interventions and quantitatively estimate the corresponding required effort, as well as in an emerging epidemic situation to assess the pandemic potential of the pathogen from population and early outbreak data.
doi:10.1186/1742-4682-11-3
PMCID: PMC3909360  PMID: 24418011
Metapopulation models; Epidemic spreading; Complex networks; Mobility; Mixing patterns; Travel behaviour
4.  Advancing a Framework to Enable Characterization and Evaluation of Data Streams Useful for Biosurveillance 
PLoS ONE  2014;9(1):e83730.
In recent years, biosurveillance has become the buzzword under which a diverse set of ideas and activities regarding detecting and mitigating biological threats are incorporated depending on context and perspective. Increasingly, biosurveillance practice has become global and interdisciplinary, requiring information and resources across public health, One Health, and biothreat domains. Even within the scope of infectious disease surveillance, multiple systems, data sources, and tools are used with varying and often unknown effectiveness. Evaluating the impact and utility of state-of-the-art biosurveillance is, in part, confounded by the complexity of the systems and the information derived from them. We present a novel approach conceptualizing biosurveillance from the perspective of the fundamental data streams that have been or could be used for biosurveillance and to systematically structure a framework that can be universally applicable for use in evaluating and understanding a wide range of biosurveillance activities. Moreover, the Biosurveillance Data Stream Framework and associated definitions are proposed as a starting point to facilitate the development of a standardized lexicon for biosurveillance and characterization of currently used and newly emerging data streams. Criteria for building the data stream framework were developed from an examination of the literature, analysis of information on operational infectious disease biosurveillance systems, and consultation with experts in the area of biosurveillance. To demonstrate utility, the framework and definitions were used as the basis for a schema of a relational database for biosurveillance resources and in the development and use of a decision support tool for data stream evaluation.
doi:10.1371/journal.pone.0083730
PMCID: PMC3879288  PMID: 24392093
5.  Healthcare Worker Contact Networks and the Prevention of Hospital-Acquired Infections 
PLoS ONE  2013;8(12):e79906.
We present a comprehensive approach to using electronic medical records (EMR) for constructing contact networks of healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC) – a 3.2 million square foot facility with 700 beds and about 8,000 healthcare workers – by obtaining 19.8 million EMR data points, spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks, which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based on large-scale data and do not make any a priori assumptions about edges (contacts) between healthcare workers, degree distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the healthcare worker contact networks we generate and social networks that arise in other (e.g., online) settings. Furthermore, our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to random networks of similar size and density. Using the generated contact networks, we evaluate several alternate vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust and quite effective relative to a random vaccination policy.
doi:10.1371/journal.pone.0079906
PMCID: PMC3875421  PMID: 24386075
6.  Public Health Response Systems In-Action: Learning from Local Health Departments’ Experiences with Acute and Emergency Incidents 
PLoS ONE  2013;8(11):e79457.
As part of their core mission, public health agencies attend to a wide range of disease and health threats, including those that require routine, acute, and emergency responses. While each incident is unique, the number and type of response activities are finite; therefore, through comparative analysis, we can learn about commonalities in the response patterns that could improve predictions and expectations regarding the resources and capabilities required to respond to future acute events. In this study, we interviewed representatives from more than 120 local health departments regarding their recent experiences with real-world acute public health incidents, such as infectious disease outbreaks, severe weather events, chemical spills, and bioterrorism threats. We collected highly structured data on key aspects of the incident and the public health response, particularly focusing on the public health activities initiated and community partners engaged in the response efforts. As a result, we are able to make comparisons across event types, create response profiles, and identify functional and structural response patterns that have import for future public health preparedness and response. Our study contributes to clarifying the complexity of public health response systems and our analysis reveals the ways in which these systems are adaptive to the character of the threat, resulting in differential activation of functions and partners based on the type of incident. Continued and rigorous examination of the experiences of health departments throughout the nation will refine our very understanding of what the public health response system is, will enable the identification of organizational and event inputs to performance, and will allow for the construction of rich, relevant, and practical models of response operations that can be employed to strengthen public health systems.
doi:10.1371/journal.pone.0079457
PMCID: PMC3827361  PMID: 24236137
7.  Optimizing surveillance for livestock disease spreading through animal movements 
The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems.
doi:10.1098/rsif.2012.0289
PMCID: PMC3479905  PMID: 22728387
modelling; livestock disease; surveillance; dynamic networks; disease prevention and control; livestock movements
8.  Spatio-Temporal Variation of Conversational Utterances on Twitter 
PLoS ONE  2013;8(10):e77793.
Conversations reflect the existing norms of a language. Previously, we found that utterance lengths in English fictional conversations in books and movies have shortened over a period of 200 years. In this work, we show that this shortening occurs even for a brief period of 3 years (September 2009–December 2012) using 229 million utterances from Twitter. Furthermore, the subset of geographically-tagged tweets from the United States show an inverse proportion between utterance lengths and the state-level percentage of the Black population. We argue that shortening of utterances can be explained by the increasing usage of jargon including coined words.
doi:10.1371/journal.pone.0077793
PMCID: PMC3814942  PMID: 24204968
9.  Vaccination against Foot-And-Mouth Disease: Do Initial Conditions Affect Its Benefit? 
PLoS ONE  2013;8(10):e77616.
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease.
doi:10.1371/journal.pone.0077616
PMCID: PMC3815046  PMID: 24204895
10.  Evaluating the Feasibility and Participants’ Representativeness of an Online Nationwide Surveillance System for Influenza in France 
PLoS ONE  2013;8(9):e73675.
The increasing Internet coverage and the widespread use of digital devices offer the possibility to develop new digital surveillance systems potentially capable to provide important aid to epidemiological and public health monitoring and research. In France, a new nationwide surveillance system for influenza-like illness, GrippeNet.fr, was introduced since the 2011/2012 season based on an online participatory mechanism and open to the general population. We evaluate the recruitment and participation of users to the first pilot season with respect to similar efforts in Europe to assess the feasibility of establishing a participative network of surveillance in France. We further investigate the representativeness of the GrippeNet.fr population along a set of indicators on geographical, demographic, socio-economic and health aspects. Participation was widespread in the country and with rates comparable to other European countries with partnered projects running since a longer time. It was not representative of the general population in terms of age and gender, however all age classes were represented, including the older classes (65+ years old), generally less familiar with the digital world, but considered at high risk for influenza complications. Once adjusted on demographic indicators, the GrippeNet.fr population is found to be more frequently employed, with a higher education level and vaccination rate with respect to the general population. A similar propensity to commute for work to different regions was observed, and no significant difference was found for asthma and diabetes. Results show the feasibility of the system, provide indications to inform adjusted epidemic analyses, and highlight the presence of specific population groups that need to be addressed by targeted communication strategies to achieve a higher representativeness in the following seasons.
doi:10.1371/journal.pone.0073675
PMCID: PMC3770705  PMID: 24040020
11.  Host Mobility Drives Pathogen Competition in Spatially Structured Populations 
PLoS Computational Biology  2013;9(8):e1003169.
Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors, opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.
Author Summary
When multiple infectious agents circulate in a given population of hosts, they interact for the exploitation of susceptible hosts aimed at pathogen survival and maintenance. Such interaction is ruled by the combination of different mechanisms related to the biology of host-pathogen interaction, environmental conditions and host demography and behavior. We focus on pathogen competition and we investigate whether the mobility of hosts in a spatially structured environment can act as a selective driver for pathogen circulation. We use mathematical and computational models for disease transmission between hosts and for the mobility of hosts to study the competition between two pathogens providing each other full cross-immunity after infection. Depending on the rate of migration of hosts, competition results in the dominance of either one of the pathogens at the spatial level – though the two infectious agents are characterized by the same invasion potential at the single population scale – or cocirculation of both. These results highlight the importance of explicitly accounting for the spatial scale and for the different time scales involved (i.e. host mobility and spreading dynamics of the two pathogens) in the study of host-multipathogen systems.
doi:10.1371/journal.pcbi.1003169
PMCID: PMC3744403  PMID: 23966843
12.  Spatial Transmission of Swine Vesicular Disease Virus in the 2006–2007 Epidemic in Lombardy 
PLoS ONE  2013;8(5):e62878.
In 2006 and 2007 pig farming in the region of Lombardy, in the north of Italy, was struck by an epidemic of Swine Vesicular Disease virus (SVDV). In fact this epidemic could be viewed as consisting of two sub-epidemics, as the reported outbreaks occurred in two separate time periods. These periods differed in terms of the provinces or municipalities that were affected and also in terms of the timing of implementation of movement restrictions. Here we use a simple mathematical model to analyse the epidemic data, quantifying between-farm transmission probability as a function of between-farm distance. The results show that the distance dependence of between-farm transmission differs between the two periods. In the first period transmission over relatively long distances occurred with higher probability than in the second period, reflecting the effect of movement restrictions in the second period. In the second period however, more intensive transmission occurred over relatively short distances. Our model analysis explains this in terms of the relatively high density of pig farms in the area most affected in this period, which exceeds a critical farm density for between-farm transmission. This latter result supports the rationale for the additional control measure taken in 2007 of pre-emptively culling farms in that area.
doi:10.1371/journal.pone.0062878
PMCID: PMC3647039  PMID: 23667534
13.  Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment 
PLoS ONE  2013;8(4):e58802.
Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80%) movements occurred within 1 km of an individual’s home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time) increased an epidemic’s final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study emphasizes the need for careful consideration of human social interactions when designing infectious disease mitigation strategies, particularly within resource-poor urban environments.
doi:10.1371/journal.pone.0058802
PMCID: PMC3620113  PMID: 23577059
14.  A Combinatorial Model of Malware Diffusion via Bluetooth Connections 
PLoS ONE  2013;8(3):e59468.
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.
doi:10.1371/journal.pone.0059468
PMCID: PMC3605460  PMID: 23555677
15.  Exploring the Morphospace of Communication Efficiency in Complex Networks 
PLoS ONE  2013;8(3):e58070.
Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network (“routing”), we define analytic measures directed at characterizing network communication when signals flow in a random walk process (“diffusion”). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.
doi:10.1371/journal.pone.0058070
PMCID: PMC3591454  PMID: 23505455
16.  Estimating the Probability of a Major Outbreak from the Timing of Early Cases: An Indeterminate Problem? 
PLoS ONE  2013;8(3):e57878.
Conservation biologists, as well as veterinary and public health officials, would benefit greatly from being able to forecast whether outbreaks of infectious disease will be major. For values of the basic reproductive number (R0) between one and two, infectious disease outbreaks have a reasonable chance of either fading out at an early stage or, in the absence of intervention, spreading widely within the population. If it were possible to predict when fadeout was likely to occur, the need for costly precautionary control strategies could be minimized. However, the predictability of even simple epidemic processes remains largely unexplored. Here we conduct an examination of simulated data from the early stages of a fatal disease outbreak and explore how observable information might be useful for predicting major outbreaks. Specifically, would knowing the time of deaths for the first few cases allow us to predict whether an outbreak will be major? Using two approaches, trajectory matching and discriminant function analysis, we find that even in our best-case scenario (with accurate knowledge of epidemiological parameters, and precise times of death), it was not possible to reliably predict the outcome of a stochastic Susceptible-Exposed–Infectious-Recovered (SEIR) process.
doi:10.1371/journal.pone.0057878
PMCID: PMC3590282  PMID: 23483934
17.  The Role of Community Mixing Styles in Shaping Epidemic Behaviors in Weighted Networks 
PLoS ONE  2013;8(2):e57100.
The dynamics of infectious diseases that are spread through direct contact have been proven to depend on the strength of community structure or modularity within the underlying network. It has been recently shown that weighted networks with similar modularity values may exhibit different mixing styles regarding the number of connections among communities and their respective weights. However, the effect of mixing style on epidemic behavior was still unclear. In this paper, we simulate the spread of disease within networks with different mixing styles: a dense-weak style (i.e., many edges among the communities with small weights) and a sparse-strong style (i.e., a few edges among the communities with large weights). Simulation results show that, with the same modularity: 1) the mixing style significantly influences the epidemic size, speed, pattern and immunization strategy; 2) the increase of the number of communities amplifies the effect of the mixing style; 3) when the mixing style changes from sparse-strong to dense-weak, there is a ‘saturation point’, after which the epidemic size and pattern become stable. We also provide a mean-field solution of the epidemic threshold and size on weighted community networks with arbitrary external and internal degree distribution. The solution explains the effect of the second moment of the degree distribution, and a symmetric effect of internal and external connections (incl. degree distribution and weight). Our study has both potential significance for designing more accurate metrics for the community structure and exploring diffusion dynamics on metapopulation networks.
doi:10.1371/journal.pone.0057100
PMCID: PMC3577779  PMID: 23437321
18.  On the Robustness of In- and Out-Components in a Temporal Network 
PLoS ONE  2013;8(2):e55223.
Background
Many networks exhibit time-dependent topologies, where an edge only exists during a certain period of time. The first measurements of such networks are very recent so that a profound theoretical understanding is still lacking. In this work, we focus on the propagation properties of infectious diseases in time-dependent networks. In particular, we analyze a dataset containing livestock trade movements. The corresponding networks are known to be a major route for the spread of animal diseases. In this context chronology is crucial. A disease can only spread if the temporal sequence of trade contacts forms a chain of causality. Therefore, the identification of relevant nodes under time-varying network topologies is of great interest for the implementation of counteractions.
Methodology/Findings
We find that a time-aggregated approach might fail to identify epidemiologically relevant nodes. Hence, we explore the adaptability of the concept of centrality of nodes to temporal networks using a data-driven approach on the example of animal trade. We utilize the size of the in- and out-component of nodes as centrality measures. Both measures are refined to gain full awareness of the time-dependent topology and finite infectious periods. We show that the size of the components exhibit strong temporal heterogeneities. In particular, we find that the size of the components is overestimated in time-aggregated networks. For disease control, however, a risk assessment independent of time and specific disease properties is usually favored. We therefore explore the disease parameter range, in which a time-independent identification of central nodes remains possible.
Conclusions
We find a ranking of nodes according to their component sizes reasonably stable for a wide range of infectious periods. Samples based on this ranking are robust enough against varying disease parameters and hence are promising tools for disease control.
doi:10.1371/journal.pone.0055223
PMCID: PMC3566222  PMID: 23405124
19.  Decision Support System for the Response to Infectious Disease Emergencies Based on WebGIS and Mobile Services in China 
PLoS ONE  2013;8(1):e54842.
Background
For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field.
Methodology/Principal Findings
Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies.
Conclusions/Significance
The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts.
doi:10.1371/journal.pone.0054842
PMCID: PMC3553097  PMID: 23372780
20.  Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm 
BMC Medicine  2012;10:165.
Background
Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches.
Methods
We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability.
Results
Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model.
Conclusions
Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.
doi:10.1186/1741-7015-10-165
PMCID: PMC3585792  PMID: 23237460
computational epidemiology; H1N1 influenza pandemic; prediction; validation.
21.  A Generic Model to Simulate Air-Borne Diseases as a Function of Crop Architecture 
PLoS ONE  2012;7(11):e49406.
In a context of pesticide use reduction, alternatives to chemical-based crop protection strategies are needed to control diseases. Crop and plant architectures can be viewed as levers to control disease outbreaks by affecting microclimate within the canopy or pathogen transmission between plants. Modeling and simulation is a key approach to help analyze the behaviour of such systems where direct observations are difficult and tedious. Modeling permits the joining of concepts from ecophysiology and epidemiology to define structures and functions generic enough to describe a wide range of epidemiological dynamics. Additionally, this conception should minimize computing time by both limiting the complexity and setting an efficient software implementation. In this paper, our aim was to present a model that suited these constraints so it could first be used as a research and teaching tool to promote discussions about epidemic management in cropping systems. The system was modelled as a combination of individual hosts (population of plants or organs) and infectious agents (pathogens) whose contacts are restricted through a network of connections. The system dynamics were described at an individual scale. Additional attention was given to the identification of generic properties of host-pathogen systems to widen the model's applicability domain. Two specific pathosystems with contrasted crop architectures were considered: ascochyta blight on pea (homogeneously layered canopy) and potato late blight (lattice of individualized plants). The model behavior was assessed by simulation and sensitivity analysis and these results were discussed against the model ability to discriminate between the defined types of epidemics. Crop traits related to disease avoidance resulting in a low exposure, a slow dispersal or a de-synchronization of plant and pathogen cycles were shown to strongly impact the disease severity at the crop scale.
doi:10.1371/journal.pone.0049406
PMCID: PMC3511473  PMID: 23226209
22.  A Metapopulation Model to Assess the Capacity of Spread of Meticillin-Resistant Staphylococcus aureus ST398 in Humans 
PLoS ONE  2012;7(10):e47504.
The emergence of the livestock-associated clone of meticillin-resistant Staphylococcus aureus (MRSA) ST398 is a serious public health issue throughout Europe. In The Netherlands a stringent ‘search-and-destroy’ policy has been adopted, keeping low the level of MRSA prevalence. However, reports have recently emerged of transmission events between humans showing no links to livestock, contradicting belief that MRSA ST398 is poorly transmissible in humans. The question regarding the transmissibility of MRSA ST398 in humans therefore remains of great interest. Here, we investigated the capacity of MRSA ST398 to spread into an entirely susceptible human population subject to the effect of a single MRSA-positive commercial pig farm. Using a stochastic, discrete-time metapopulation model, we explored the effect of varying both the probability of persistent carriage and that of acquiring MRSA due to contact with pigs on the transmission dynamics of MRSA ST398 in humans. In particular, we assessed the value and key determinants of the basic reproduction ratio (R0) for MRSA ST398. Simulations showed that the presence of recurrent exposures with pigs in risky populations allows MRSA ST398 to persist in the metapopulation and transmission events to occur beyond the farming community, even when the probability of persistent carriage is low. We further showed that persistent carriage should occur in less than 10% of the time for MRSA ST398 to conserve epidemiological characteristics similar to what has been previously reported. These results indicate that implementing control policy that only targets human carriers may not be sufficient to control MRSA ST398 in the community if it remains in pigs. We argue that farm-level control measures should be implemented if an eradication programme is to be considered.
doi:10.1371/journal.pone.0047504
PMCID: PMC3480390  PMID: 23112817
23.  Knowledge, Attitudes, Practices and Emotional Reactions among Residents of Avian Influenza (H5N1) Hit Communities in Vietnam 
PLoS ONE  2012;7(10):e47560.
Background
Awareness of individuals’ knowledge and predicting their behavior and emotional reactions is crucial when evaluating clinical preparedness for influenza pandemics with a highly pathogenic virus. Knowledge, attitude, and practice (KAP) relating to avian influenza (H5N1) virus infection among residents in communities where H5N1 patients occurred in Vietnam has not been reported.
Methods and Principal Findings
Face-to-face interviews including KAP survey were conducted in Bac Kan province, located in the northeast mountainous region of Vietnam. Participants were residents who lived in a community where H5N1 cases have ever been reported (event group, n = 322) or one where cases have not been reported (non-event group, n = 221). Data on emotional reactions of participants and healthcare-seeking behavior after the event in neighboring areas were collected as well as information on demographics and environmental measures, information sources, and KAP regarding H5N1. These data were compared between two groups. Higher environmental risk of H5N1 and improper poultry-handling behaviors were identified in the event group. At the time of the event, over 50% of the event group sought healthcare for flu-like symptoms or because they were scared. Awareness of the event influenced KAP scores. Healthcare-seeking behavior and attention to H5N1 poultry outbreaks diminished in the event group as time passed after the outbreak compared with the non-event group. Factors that motivated participants to seek healthcare sooner were knowledge of early access to healthcare and the risk of eating sick/dead poultry, and perception of the threat of H5N1.
Conclusions
Awareness of H5N1 patients in neighboring areas can provoke panic in residents and influence their healthcare-seeking behavior. Periodic education to share experiences on the occurrence of H5N1 patients and provide accurate information may help prevent panic and infection and reduce mortality. Local conditions should be taken into account when emphasizing the need for early access to healthcare.
doi:10.1371/journal.pone.0047560
PMCID: PMC3477130  PMID: 23094063
24.  A Characterization of Internet Dating Network Structures among Nordic Men Who Have Sex with Men 
PLoS ONE  2012;7(7):e39717.
Background
The Internet has become an important venue for seeking sexual partners and may facilitate transmission of sexually transmitted infections.
Methods
We examined a 64-day data log of flirt messages expressing sexual interest among MSM within the Qruiser.com community. We used logistic regression to analyze characteristics of MSM sending and receiving flirt messages and negative binomial regression to examine individual activity and popularity. The structural properties, including the core structure of the flirt network, were analyzed.
Results
The MSM population consisted of approximately 40% homosexuals and 37% bisexuals, while the remaining 23% included men who identified as heterosexual but searched for sex with men and “experimental”. MSM were more likely to send flirt messages if they were homosexual and aged 40+ years; young people aged < 30 years were more likely to receive a flirt. Possession of a webcam was strongly associated with both sending flirt messages and being a flirt target. The distributions of flirts sent (max kout = 2162) and received (max kin = 84) were highly heterogeneous. Members in central cores were more likely homosexuals, singles, and aged 31–40 years. The probability of a matched flirt (flirt returned from target) increased from 1% in the outer core to 18% in the central core (core size = 4).
Discussion
The flirt network showed high degree heterogeneity similar to the structural properties of real sexual contact networks with a single central core. Further studies are needed to explore use of webcam for Internet dating.
doi:10.1371/journal.pone.0039717
PMCID: PMC3396616  PMID: 22808052
25.  Heterogeneous length of stay of hosts’ movements and spatial epidemic spread 
Scientific Reports  2012;2:476.
Infectious diseases outbreaks are often characterized by a spatial component induced by hosts’ distribution, mobility, and interactions. Spatial models that incorporate hosts’ movements are being used to describe these processes, to investigate the conditions for propagation, and to predict the spatial spread. Several assumptions are being considered to model hosts’ movements, ranging from permanent movements to daily commuting, where the time spent at destination is either infinite or assumes a homogeneous fixed value, respectively. Prompted by empirical evidence, here we introduce a general metapopulation approach to model the disease dynamics in a spatially structured population where the mobility process is characterized by a heterogeneous length of stay. We show that large fluctuations of the length of stay, as observed in reality, can have a significant impact on the threshold conditions for the global epidemic invasion, thus altering model predictions based on simple assumptions, and displaying important public health implications.
doi:10.1038/srep00476
PMCID: PMC3384080  PMID: 22741060

Results 1-25 (53)