PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Prochlorococcus Ecotype Abundances in the North Atlantic Ocean As Revealed by an Improved Quantitative PCR Method†  
The cyanobacterium Prochlorococcus numerically dominates the photosynthetic community in the tropical and subtropical regions of the world's oceans. Six evolutionary lineages of Prochlorococcus have been described, and their distinctive physiologies and genomes indicate that these lineages are “ecotypes” and should have different oceanic distributions. Two methods recently developed to quantify these ecotypes in the field, probe hybridization and quantitative PCR (QPCR), have shown that this is indeed the case. To facilitate a global investigation of these ecotypes, we modified our QPCR protocol to significantly increase its speed, sensitivity, and accessibility and validated the method in the western and eastern North Atlantic Ocean. We showed that all six ecotypes had distinct distributions that varied with depth and location, and, with the exception of the deeper waters at the western North Atlantic site, the total Prochlorococcus counts determined by QPCR matched the total counts measured by flow cytometry. Clone library analyses of the deeper western North Atlantic waters revealed ecotypes that are not represented in the culture collections with which the QPCR primers were designed, explaining this discrepancy. Finally, similar patterns of relative ecotype abundance were obtained in QPCR and probe hybridization analyses of the same field samples, which could allow comparisons between studies.
doi:10.1128/AEM.72.1.723-732.2006
PMCID: PMC1352191  PMID: 16391112
2.  UV hyper-resistance in Prochlorococcus MED4 results from a single base pair deletion just upstream of an operon encoding nudix hydrolase and photolyase 
Environmental Microbiology  2010;12(7):1978-1988.
Exposure to solar radiation can cause mortality in natural communities of pico-phytoplankton, both at the surface and to a depth of at least 30 m. DNA damage is a significant cause of death, mainly due to cyclobutane pyrimidine dimer formation, which can be lethal if not repaired. While developing a UV mutagenesis protocol for the marine cyanobacterium Prochlorococcus, we isolated a UV-hyper-resistant variant of high light-adapted strain MED4. The hyper-resistant strain was constitutively upregulated for expression of the mutT-phrB operon, encoding nudix hydrolase and photolyase, both of which are involved in repair of DNA damage that can be caused by UV light. Photolyase (PhrB) breaks pyrimidine dimers typically caused by UV exposure, using energy from visible light in the process known as photoreactivation. Nudix hydrolase (MutT) hydrolyses 8-oxo-dGTP, an aberrant form of GTP that results from oxidizing conditions, including UV radiation, thus impeding mispairing and mutagenesis by preventing incorporation of the aberrant form into DNA. These processes are error-free, in contrast to error-prone SOS dark repair systems that are widespread in bacteria. The UV-hyper-resistant strain contained only a single mutation: a 1 bp deletion in the intergenic region directly upstream of the mutT-phrB operon. Two subsequent enrichments for MED4 UV-hyper-resistant strains from MED4 wild-type cultures gave rise to strains containing this same 1 bp deletion, affirming its connection to the hyper-resistant phenotype. These results have implications for Prochlorococcus DNA repair mechanisms, genome stability and possibly lysogeny.
doi:10.1111/j.1462-2920.2010.02203.x
PMCID: PMC2955971  PMID: 20345942

Results 1-2 (2)