PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Experimental Infections with Mycoplasma agalactiae Identify Key Factors Involved in Host-Colonization 
PLoS ONE  2014;9(4):e93970.
Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.
doi:10.1371/journal.pone.0093970
PMCID: PMC3974822  PMID: 24699671
2.  Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics 
The concept of pathogenesis has evolved considerably over recent years, and the scenario “a microbe + virulence factors = disease” is probably far from reality in a number of cases. Actual pathogens have extremely broad biological diversity and are found in all major groups of microorganisms (viruses, bacteria, fungi, protozoa…). Their pathogenicity results from strong and often highly specific interactions they have with either their microbial environment, hosts and/or arthropod vectors. In this review, we explore the contribution of metagenomic approaches toward understanding pathogens within the context of microbial communities. With this broader view, we discussed the concept of “pathobiome” and the research questions that this raises.
doi:10.3389/fcimb.2014.00029
PMCID: PMC3942874  PMID: 24634890
next generation sequencing; microbial ecosystem; interactions
3.  Role of the GapA and CrmA Cytadhesins of Mycoplasma gallisepticum in Promoting Virulence and Host Colonization 
Infection and Immunity  2013;81(5):1618-1624.
Mycoplasma gallisepticum is an important avian pathogen that commonly induces chronic respiratory disease in chicken. To better understand the mycoplasma factors involved in host colonization, chickens were infected via aerosol with two hemadsorption-negative (HA−) mutants, mHAD3 and RCL2, that were derived from a low passage of the pathogenic strain R (Rlow) and are both deficient in the two major cytadhesins GapA and CrmA. After 9 days of infection, chickens were monitored for air sac lesions and for the presence of mycoplasmas in various organs. The data showed that mHAD3, in which the crmA gene has been disrupted, did not promote efficient colonization or significant air sac lesions. In contrast, the spontaneous HA− RCL2 mutant, which contains a point mutation in the gapA structural gene, successfully colonized the respiratory tract and displayed an attenuated virulence compared to that of Rlow. It has previously been shown in vitro that the point mutation of RCL2 spontaneously reverts with a high frequency, resulting in on-and-off switching of the HA phenotype. Detailed analyses further revealed that such an event is not responsible for the observed in vivo outcome, since 98.4% of the mycoplasma populations recovered from RCL2-infected chickens still display the mutation and the associated phenotype. Unlike Rlow, however, RCL2 was unable to colonize inner organs. These findings demonstrate the major role played by the GapA and CrmA proteins in M. gallisepticum host colonization and virulence.
doi:10.1128/IAI.00112-13
PMCID: PMC3648004  PMID: 23460514
4.  Finishing bacterial genome assemblies with Mix 
BMC Bioinformatics  2013;14(Suppl 15):S16.
Motivation
Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase.
Methods
In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length.
Results
We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects.
Availability
Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.
doi:10.1186/1471-2105-14-S15-S16
PMCID: PMC3851838  PMID: 24564706
5.  Draft Genome Sequences of Mycoplasma auris and Mycoplasma yeatsii, Two Species of the Ear Canal of Caprinae 
Genome Announcements  2013;1(3):e00280-13.
We report here the draft genome sequences of Mycoplasma auris and Mycoplasma yeatsii, two species commonly isolated from the external ear canal of Caprinae.
doi:10.1128/genomeA.00280-13
PMCID: PMC3707572  PMID: 23766401
6.  Draft Genome Sequences of Mycoplasma alkalescens, Mycoplasma arginini, and Mycoplasma bovigenitalium, Three Species with Equivocal Pathogenic Status for Cattle 
Genome Announcements  2013;1(3):e00348-13.
We report here the draft genome sequences of Mycoplasma alkalescens, Mycoplasma arginini, and Mycoplasma bovigenitalium. These three species are regularly isolated from bovine clinical specimens, although their role in disease is unclear.
doi:10.1128/genomeA.00348-13
PMCID: PMC3707579  PMID: 23766408
7.  Complete Genome Sequence of Mycoplasma putrefaciens Strain 9231, One of the Agents of Contagious Agalactia in Goats 
Genome Announcements  2013;1(3):e00354-13.
Mycoplasma putrefaciens is one of the etiologic agents of contagious agalactia in goats. We report herein the complete genome sequence of Mycoplasma putrefaciens strain 9231.
doi:10.1128/genomeA.00354-13
PMCID: PMC3707581  PMID: 23766410
8.  Emergence of Atypical Mycoplasma agalactiae Strains Harboring a New Prophage and Associated with an Alpine Wild Ungulate Mortality Episode 
Applied and Environmental Microbiology  2012;78(13):4659-4668.
The bacterium Mycoplasma agalactiae is responsible for contagious agalactia (CA) in small domestic ruminants, a syndrome listed by the World Organization for Animal Health and responsible for severe damage to the dairy industry. Recently, we frequently isolated this pathogen from lung lesions of ibexes during a mortality episode in the French Alps. This situation was unusual in terms of host specificity and tissue tropism, raising the question of M. agalactiae emergence in wildlife. To address this issue, the ibex isolates were characterized using a combination of approaches that included antigenic profiles, molecular typing, optical mapping, and whole-genome sequencing. Genome analyses showed the presence of a new, large prophage containing 35 coding sequences (CDS) that was detected in most but not all ibex strains and has a homolog in Mycoplasma conjunctivae, a species causing keratoconjunctivitis in wild ungulates. This and the presence in all strains of large integrated conjugative elements suggested highly dynamic genomes. Nevertheless, M. agalactiae strains circulating in the ibex population were shown to be highly related, most likely originating from a single parental clone that has also spread to another wild ungulate species of the same geographical area, the chamois. These strains clearly differ from strains described in Europe so far, including those found nearby, before CA eradication a few years ago. While M. agalactiae pathogenicity in ibexes remains unclear, our data showed the emergence of atypical strains in Alpine wild ungulates, raising the question of a role for the wild fauna as a potential reservoir of pathogenic mycoplasmas.
doi:10.1128/AEM.00332-12
PMCID: PMC3370481  PMID: 22522685
9.  Distribution and diversity of mycoplasma plasmids: lessons from cryptic genetic elements 
BMC Microbiology  2012;12:257.
Background
The evolution of mycoplasmas from a common ancestor with Firmicutes has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the Mycoplasma genus.
Results
We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the Mycoplasma mycoides cluster; none was from the Mycoplasma bovis-Mycoplasma agalactiae group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from M. yeatsii; it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the M. mycoides cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade Firmicutes.
Conclusions
Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.
doi:10.1186/1471-2180-12-257
PMCID: PMC3541243  PMID: 23145790
Mycoplasma,Plasmid,Replication,Rep protein,Gene transfer,Evolution,Expression vector,Mycoplasma mycoides,Mycoplasma capricolum,Mycoplasma yeatsii
10.  Evolutionary History of Contagious Bovine Pleuropneumonia Using Next Generation Sequencing of Mycoplasma mycoides Subsp. mycoides “Small Colony” 
PLoS ONE  2012;7(10):e46821.
Mycoplasma mycoides subsp. mycoides “Small Colony” (MmmSC) is responsible for contagious bovine pleuropneumonia (CBPP) in bovidae, a notifiable disease to the World Organization for Animal Health (OIE). Although its origin is not documented, the disease was known in Europe in 1773. It reached nearly world-wide distribution in the 19th century through the cattle trade and was eradicated from most continents by stamping-out policies. During the 20th century it persisted in Africa, and it reappeared sporadically in Southern Europe. Yet, classical epidemiology studies failed to explain the re-occurrence of the disease in Europe in the 1990s. The objectives of this study were to obtain a precise phylogeny of this pathogen, reconstruct its evolutionary history, estimate the date of its emergence, and determine the origin of the most recent European outbreaks. A large-scale genomic approach based on next-generation sequencing technologies was applied to construct a robust phylogeny of this extremely monomorphic pathogen by using 20 representative strains of various geographical origins. Sixty two polymorphic genes of the MmmSC core genome were selected, representing 83601 bp in total and resulting in 139 SNPs within the 20 strains. A robust phylogeny was obtained that identified a lineage specific to European strains; African strains were scattered in various branches. Bayesian analysis allowed dating the most recent common ancestor for MmmSC around 1700. The strains circulating in Sub-Saharan Africa today, however, were shown to descend from a strain that existed around 1810. MmmSC emerged recently, about 300 years ago, and was most probably exported from Europe to other continents, including Africa, during the 19th century. Its diversity is now greater in Africa, where CBPP is enzootic, than in Europe, where outbreaks occurred sporadically until 1999 and where CBPP may now be considered eradicated unless MmmSC remains undetected.
doi:10.1371/journal.pone.0046821
PMCID: PMC3468273  PMID: 23071648
11.  Unexpected genetic diversity of Mycoplasma agalactiae caprine isolates from an endemic geographically restricted area of Spain 
Background
The genetic diversity of Mycoplasma agalactiae (MA) isolates collected in Spain from goats in an area with contagious agalactia (CA) was assessed using a set of validated and new molecular typing methods. Validated methods included pulsed field gel electrophoresis (PFGE), variable number of tandem repeats (VNTR) typing, and Southern blot hybridization using a set of MA DNA probes, including those for typing the vpma genes repertoire. New approaches were based on PCR and targeted genomic regions that diverged between strains as defined by in silico genomic comparisons of sequenced MA genomes.
Results
Overall, the data showed that all typing tools yielded consistent results, with the VNTR analyses being the most rapid method to differentiate the MA isolates with a discriminatory ability comparable to that of PFGE and of a set of new PCR assays. All molecular typing approaches indicated that the Spanish isolates from the endemic area in Murcia were very diverse, with different clonal isolates probably restricted to separate, but geographically close, local areas.
Conclusions
The important genetic diversity of MA observed in infected goats from Spain contrasts with the overall homogeneity of the genomic background encountered in MA from sheep with CA in Southern France or Italy, suggesting that assessment of the disease status in endemic areas may require different approaches in sheep and in goats. A number of congruent sub-typing tools are now available for the differentiation of caprine isolates with comparable discriminatory powers.
doi:10.1186/1746-6148-8-146
PMCID: PMC3514313  PMID: 22920649
Mycoplasma agalactiae; Molecular typing; Contagious agalactia; Goats
12.  A novel substitution matrix fitted to the compositional bias in Mollicutes improves the prediction of homologous relationships 
BMC Bioinformatics  2011;12:457.
Background
Substitution matrices are key parameters for the alignment of two protein sequences, and consequently for most comparative genomics studies. The composition of biological sequences can vary importantly between species and groups of species, and classical matrices such as those in the BLOSUM series fail to accurately estimate alignment scores and statistical significance with sequences sharing marked compositional biases.
Results
We present a general and simple methodology to build matrices that are especially fitted to the compositional bias of proteins. Our approach is inspired from the one used to build the BLOSUM matrices and is based on learning substitution and amino acid frequencies on real sequences with the corresponding compositional bias. We applied it to the large scale comparison of Mollicute AT-rich genomes. The new matrix, MOLLI60, was used to predict pairwise orthology relationships, as well as homolog families among 24 Mollicute genomes. We show that this new matrix enables to better discriminate between true and false orthologs and improves the clustering of homologous proteins, with respect to the use of the classical matrix BLOSUM62.
Conclusions
We show in this paper that well-fitted matrices can improve the predictions of orthologous and homologous relationships among proteins with a similar compositional bias. With the ever-increasing number of sequenced genomes, our approach could prove valuable in numerous comparative studies focusing on atypical genomes.
doi:10.1186/1471-2105-12-457
PMCID: PMC3248887  PMID: 22115330
13.  Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells 
PLoS ONE  2011;6(9):e25291.
Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.
doi:10.1371/journal.pone.0025291
PMCID: PMC3179502  PMID: 21966487
14.  Critical Role of Dispensable Genes in Mycoplasma agalactiae Interaction with Mammalian Cells▿  
Infection and Immunity  2010;78(4):1542-1551.
Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens.
doi:10.1128/IAI.01195-09
PMCID: PMC2849427  PMID: 20123713
15.  Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity 
BMC Genomics  2010;11:86.
Background
While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study.
Results
The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms.
Conclusion
Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
doi:10.1186/1471-2164-11-86
PMCID: PMC2824730  PMID: 20122262
16.  Occurrence, Plasticity, and Evolution of the vpma Gene Family, a Genetic System Devoted to High-Frequency Surface Variation in Mycoplasma agalactiae▿ † 
Journal of Bacteriology  2009;191(13):4111-4121.
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits a very versatile surface architecture by switching multiple, related lipoproteins (Vpmas) on and off. In the type strain, PG2, Vpma phase variation is generated by a cluster of six vpma genes that undergo frequent DNA rearrangements via site-specific recombination. To further comprehend the degree of diversity that can be generated at the M. agalactiae surface, the vpma gene repertoire of a field strain, 5632, was analyzed and shown to contain an extended repertoire of 23 vpma genes distributed between two loci located 250 kbp apart. Loci I and II include 16 and 7 vpma genes, respectively, with all vpma genes of locus II being duplicated at locus I. Several Vpmas displayed a chimeric structure suggestive of homologous recombination, and a global proteomic analysis further indicated that at least 13 of the 16 Vpmas can be expressed by the 5632 strain. Because a single promoter is present in each vpma locus, concomitant Vpma expression can occur in a strain with duplicated loci. Consequently, the number of possible surface combinations is much higher for strain 5632 than for the type strain. Finally, our data suggested that insertion sequences are likely to be involved in 5632 vpma locus duplication at a remote chromosomal position. The role of such mobile genetic elements in chromosomal shuffling of genes encoding major surface components may have important evolutionary and epidemiological consequences for pathogens, such as mycoplasmas, that have a reduced genome and no cell wall.
doi:10.1128/JB.00251-09
PMCID: PMC2698505  PMID: 19376859
17.  Suppression-Subtractive Hybridization as a Strategy To Identify Taxon-Specific Sequences within the Mycoplasma mycoides Cluster: Design and Validation of an M. capricolum subsp. capricolum-Specific PCR Assay▿  
Journal of Clinical Microbiology  2008;46(4):1307-1316.
The phylogenetically related Mycoplasma capricolum subsp. capricolum and M. mycoides subsp. mycoides biotype Large Colony are two small-ruminant pathogens involved in contagious agalactia. Their respective contributions to clinical outbreaks are not well documented, because they are difficult to differentiate with the current diagnostic techniques. In order to identify DNA sequences specific to one taxon or the other, a suppression-subtractive hybridization approach was developed. DNA fragments resulting from the reciprocal subtraction of the type strains were used as probes on a panel of M. capricolum subsp. capricolum and M. mycoides subsp. mycoides biotype Large Colony strains to assess their intrataxon specificity. Due to a high intrataxon polymorphism and important cross-reactions between taxa, a single DNA fragment was shown to be specific for M. capricolum subsp. capricolum and to be present in all M. capricolum subsp. capricolum field isolates tested in this study. A PCR assay targeting the corresponding gene (simpA51) was designed that resulted in a 560-bp amplification only in M. capricolum subsp. capricolum and in M. capricolum subsp. capripneumoniae (the etiological agent of contagious caprine pleuropneumonia). simpA51 was further improved to generate a multiplex PCR (multA51) that allows the differentiation of M. capricolum subsp. capripneumoniae from M. capricolum subsp. capricolum. Both the simpA51 and multA51 assays accurately identify M. capricolum subsp. capricolum among other mycoplasmas, including all members of the M. mycoides cluster. simpA51 and multA51 PCRs are proposed as sensitive and robust tools for the specific identification of M. capricolum subsp. capricolum and M. capricolum subsp. capripneumoniae.
doi:10.1128/JCM.01617-07
PMCID: PMC2292954  PMID: 18234866
18.  Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation 
Molecular Microbiology  2008;67(6):1196-1210.
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host–pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the ‘phase-locked’ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ‘difficult-to-manipulate’ mycoplasmas.
doi:10.1111/j.1365-2958.2007.06103.x
PMCID: PMC2268961  PMID: 18248580
19.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
20.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
doi:10.1371/journal.pgen.0030075
PMCID: PMC1868952  PMID: 17511520
21.  A New Integrative Conjugative Element Occurs in Mycoplasma agalactiae as Chromosomal and Free Circular Forms 
Journal of Bacteriology  2006;188(11):4137-4141.
An integrative conjugative element, ICEA, was characterized in Mycoplasma agalactiae strain 5632, in which it occurs as multiple chromosomal copies and as a free circular form. The distribution of ICEA sequences in M. agalactiae strains and their occurrence in Mycoplasma bovis suggest the spreading of the element within or between species.
doi:10.1128/JB.00114-06
PMCID: PMC1482908  PMID: 16707706
22.  Phenotypic Switching in Mycoplasma gallisepticum Hemadsorption Is Governed by a High-Frequency, Reversible Point Mutation  
Infection and Immunity  2003;71(3):1265-1273.
Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA− variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA− mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA+ clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover.
doi:10.1128/IAI.71.3.1265-1273.2003
PMCID: PMC148866  PMID: 12595441
23.  Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus 
Journal of Bacteriology  2002;184(21):5987-5998.
The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5′ untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5′ untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae.
doi:10.1128/JB.184.21.5987-5998.2002
PMCID: PMC135373  PMID: 12374833
24.  Phase Variation among Major Surface Antigens of Mycoplasma penetrans 
Infection and Immunity  2001;69(12):7642-7651.
The pathogenicity and prevalence of Mycoplasma penetrans, a Mycoplasma species recently isolated from humans, are still debated. A major P35 antigen, which is used as target epitope in serological assays, was shown to be a phase-variable lipid-associated membrane protein (LAMP). In this study, we performed a comparative analysis of the LAMP patterns from five M. penetrans clinical isolates and from the type strain. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles and immunoblots with sera serially collected from an M. penetrans-infected patient indicated that these strains expressed different LAMP repertoires. Furthermore, the intraclonal variation in the expression of LAMPs (P34A, P34B, P35, and P38) was monitored by immunoblot analysis with three specific monoclonal antibodies (MAbs) developed in this study and MAb 7 to P35. The phase variation of these LAMPs occurs in an independent manner, with frequencies of variation ranging from 10−2 to 10−4 per cell per generation. Consistent with their amphipathic nature, the P34B and P38 antigens were found exposed at the cell surface. The DNA sequence encoding the P38 antigen was defined and found to be related to those of the P35 gene and other putative LAMP-encoding genes, suggesting that these variable antigens are encoded by a family of related genes. Finally, the serum samples from an M. penetrans-infected patient contained antibodies that reacted with a P36 antigen expressed in different M. penetrans strains but not in the isolate recovered from this patient. This result suggested that in vivo phase variation of P36 occurred, which would support a role for these LAMP variations in avoiding the host's immune vigilance.
doi:10.1128/IAI.69.12.7642-7651.2001
PMCID: PMC98858  PMID: 11705944
25.  In Vitro Cell Invasion of Mycoplasma gallisepticum 
Infection and Immunity  2000;68(7):4238-4244.
The ability of the widespread avian pathogen Mycoplasma gallisepticum to invade cultured human epithelial cells (HeLa-229) and chicken embryo fibroblasts (CEF) was investigated by using the gentamicin invasion assay and a double immunofluorescence microscopic technique for accurate localization of cell-associated mycoplasmas. The presence of intracellular mycoplasmas in both cell lines was clearly demonstrated, with organisms entering the eukaryotic cells within 20 min. Internalized mycoplasmas have the ability to leave the cell, but also to survive within the intracellular space over a 48-h period. Frequencies of invasion were shown to differ between the two cell lines, but were also considerably dependent on the mycoplasma input population. Of the prototype strain R, a low-passage population in artificial medium, Rlow, was capable of active cell invasion, while a high-passage population, Rhigh, showed adherence to but nearly no uptake into HeLa-229 and CEF. By passaging Rlow and Rhigh multiple times through HeLa-229 cells, the invasion frequency was significantly increased. Taken together, these findings demonstrate that M. gallisepticum has the capability of entering nonphagocytic host cells that may provide this pathogen with the opportunity for resisting host defenses and selective antibiotic therapy, establishing chronic infections, and passing through the respiratory mucosal barrier to cause systemic infections.
PMCID: PMC101734  PMID: 10858241

Results 1-25 (27)