Search tips
Search criteria

Results 1-25 (44)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Characteristics of Fixational Eye Movements in People With Macular Disease 
Fixation stability is known to be poor for people with macular disease and has been suggested as a contributing factor for the poor visual performance of these individuals. In this study, we examined the characteristics of the different components of fixational eye movements and determined the component that plays a major role in limiting fixation stability in people with macular disease.
Sixteen observers with macular disease and 14 older adults with normal vision (control observers) monocularly fixated a small cross presented using a Rodenstock scanning laser ophthalmoscope, for trials of 30 seconds. The retinal image and the position of the cross on the retina were recorded digitally. Eye movements were extracted from the recorded videos at a sampling rate of 540 Hz using a cross-correlation technique. A velocity criterion of 8°/s was used to differentiate between slow drifts and microsaccades.
Observers with macular disease demonstrated higher fixation instability, larger amplitudes of slow drifts and microsaccades, and lower drift velocities, when compared with older adults with normal vision. The velocity and the rate of microsaccades were comparable between the two groups of observers. Multiple linear regression analysis showed that the amplitude of microsaccades, and to a smaller extent, the amplitude of slow drifts, play a major role in limiting fixation stability.
Fixation stability in people with macular disease is primarily limited by the amplitude of microsaccades, implying that rehabilitative strategies targeted at reducing the amplitude of microsaccades should improve fixation stability, and may lead to improved visual functions.
Amplitude of microsaccades plays a major role in limiting fixation stability in people with macular disease.
PMCID: PMC4137485  PMID: 25074769
fixational eye movements; fixation stability; low vision; macular disease
2.  The Glenn A. Fry Award Lecture 2012: Plasticity of the Visual System Following Central Vision Loss 
Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this paper is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes (1) the presence of oculomotor re-referencing of fixational saccades to the PRL; (2) the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more “foveal-like” instead of resembling those of the normal periphery; and (3) the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the paper is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss.
PMCID: PMC3673767  PMID: 23670125
central vision loss; low vision; AMD; plasticity; eye movements; acuity; crowding; perceptual learning; rehabilitation
3.  Cortical Reorganization after Long-Term Adaptation to Retinal Lesions in Humans 
The Journal of Neuroscience  2013;33(46):18080-18086.
Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial–tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial–tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.
PMCID: PMC3828461  PMID: 24227718
4.  Dependence of Reading Speed on Letter Spacing in Central Vision Loss 
Crowding, the difficulty in recognizing a letter in close proximity with other letters, has been suggested as an explanation for slow reading in people with central vision loss. The goals of this study were (1) to examine whether increased letter spacing in words, which presumably reduces crowding among letters, would benefit reading for people with central vision loss; and (2) to relate our finding to the current account of faulty feature integration of crowding.
Fourteen observers with central vision loss read aloud single sentences, one word at a time, using rapid serial visual presentation (RSVP). Reading speeds were calculated based on the RSVP exposure durations yielding 80% accuracy. Letters were rendered in Courier, a fixed-width font. Observers were tested at 1.4× the critical print size (CPS), three were also tested at 0.8× CPS. Reading speed was measured for five center-to-center letter spacings (range: 0.5–2× the standard spacing). The preferred retinal locus (PRL) for fixation was determined for nine of the observers, from which we calculated the horizontal dimension of the integration field for crowding.
All observers showed increased reading speed with letter spacing for small spacings, until an optimal spacing, beyond which reading speed either showed a plateau, or dropped as letter spacing further increased. The optimal spacing averaged 0.95±0.06× [±95%CI] the standard spacing for 1.4× CPS (similar for 0.8× CPS), which was not different from the standard. When converted to angular size, the measured values of the optimal letter spacing for reading show a good relationship with the calculated horizontal dimension of the integration field.
Increased letter spacing beyond the standard size, which presumably reduces crowding among letters in text, does not improve reading speed for people with central vision loss. The optimal letter spacing for reading can be predicted based on the PRL.
PMCID: PMC3429790  PMID: 22842309
reading; crowding; central vision loss; low vision; age-related macular degeneration
5.  Improving Reading Speed for People with Central Vision Loss through Perceptual Learning 
Patients with central vision loss showed a substantial improvement in reading speed after six sessions of perceptual learning. Perceptual learning might be an effective way of enhancing visual performance for people with central vision loss.
Perceptual learning has been shown to be effective in improving visual functions in the normal adult visual system, as well as in adults with amblyopia. In this study, the feasibility of applying perceptual learning to enhance reading speed in people with long-standing central vision loss was evaluated.
Six observers (mean age, 73.8) with long-standing central vision loss practiced an oral sentence-reading task, with words presented sequentially using rapid serial visual presentation (RSVP). A pre-test consisted of measurements of visual acuities, RSVP reading speeds for six print sizes, the location of the preferred retinal locus for fixation (fPRL), and fixation stability. Training consisted of six weekly sessions of RSVP reading, with 300 sentences presented per session. A post-test, identical with the pre-test, followed the training.
All observers showed improved RSVP reading speed after training. The improvement averaged 53% (range, 34–70%). Comparisons of pre- and post-test measurements revealed little changes in visual acuity, critical print size, location of the fPRL, and fixation stability.
The specificity of the learning effect, and the lack of changes to the fPRL location and fixation stability suggest that the improvements are not due to observers adopting a retinal location with better visual capability, or an improvement in fixation. Rather, the improvements are likely to represent genuine plasticity of the visual system despite the older ages of the observers, coupled with long-standing sensory deficits. Perceptual learning might be an effective way of enhancing visual performance for people with central vision loss.
PMCID: PMC3053100  PMID: 21087972
6.  Enhancing Visual Performance for People with Central Vision Loss 
People with central vision loss must use peripheral vision for visual tasks. It is well known that performance for almost all spatial tasks is worse in the normal periphery than in the normal fovea. The primary goal of my ongoing research is to understand the limiting factors and the potential for enhancing vision for people with central vision loss. Here I review previous work related to understanding the limiting factors on reading, a task that is the primary complaint of many patients with age-related macular degeneration, the leading cause of visual impairment in the elderly. I also review my work related to enhancing visual functions in the normal periphery and how it may be applied to people with central vision loss.
PMCID: PMC2851849  PMID: 20010138
low vision; central vision loss; age-related macular degeneration; reading; visual performance
8.  Spatial-frequency and contrast properties of reading in central and peripheral vision 
Journal of vision  2009;9(9):16.1-1619.
In this study, we examined the effects of contrast and spatial frequency on reading speed and compared these effects between the normal fovea and periphery. We found that when text contrast was low, reading speed demonstrated spatial-frequency tuning properties, with a peak tuning frequency that partially scaled with print size. The spatial-frequency tuning disappeared when text contrast was 100%. The spatial-frequency tuning and scaling properties for reading were largely similar between the fovea and the periphery, and closely matched those for letter identification. Just as for the task of letter identification, we showed through an ideal-observer analysis that the spatial-frequency properties for reading could be primarily accounted for by the physical properties of the word stimuli combined with human observers’ contrast sensitivity functions.
PMCID: PMC2849799  PMID: 19761349
reading; letter identification; spatial frequency; contrast; ideal observer
9.  Crowding between first- and second-order letter stimuli in normal foveal and peripheral vision 
Journal of vision  2007;7(2):10.1-1013.
Evidence that the detection of first- and second-order visual stimuli is processed by separate pathways abounds. This study asked whether first- and second-order stimuli remain independent at the stage of processing where crowding occurs. We measured thresholds for identifying a first-order (luminance defined) or second-order (contrast defined) target letter in the presence of two second- or first-order flanking letters. For comparison, we also measured thresholds when the target and flanking letters were all first or second order. Contrast of the flankers was 1.6 times their respective contrast thresholds. Measurements were obtained at the fovea and 10° in the lower visual field of four normally sighted observers. Two observers were also tested at 10° nasal visual field. As expected, in both the fovea and periphery, the magnitude of crowding (threshold elevation) was maximal at the closest letter separation and decreased as letter separation increased. The magnitude of crowding was greater for second- than for first-order target letters, independent of the order type of flankers; however, the critical distance for crowding was similar for first- and second-order letters. Substantial crossover crowding occurred when the target and flanking letters were of different order type. Our finding of substantial interaction between first- and second-order stimuli suggests that the processing of these stimuli is not independent at the stage of processing at which crowding occurs.
PMCID: PMC2747649  PMID: 18217825
crowding; first order; second order; peripheral vision; letter identification
10.  Changes across the psychometric function following perceptual learning of an RSVP reading task 
Frontiers in Psychology  2014;5:1434.
Several recent studies have shown that perceptual learning can result in improvements in reading speed for people with macular disease (e.g., Chung, 2011; Tarita-Nistor et al., 2014). The improvements were reported as an increase in reading speed defined by specific criteria; however, little is known about how other properties of the reading performance or the participants' perceptual responses change as a consequence of learning. In this paper, we performed detailed analyses of data following perceptual learning using an RSVP (rapid serial visual presentation) reading task, looking beyond the change in reading speed defined by the threshold at a given accuracy on a psychometric function relating response accuracy with word exposure duration. Specifically, we explored the statistical characteristics of the response data to address two specific questions: was there a change in the slope of the psychometric function and did the improvements in performance occur consistently across different word exposure durations? Our results show that there is a general steepening of the slope of the psychometric function, leading to non-uniform improvements across stimulus levels.
PMCID: PMC4274879  PMID: 25566119
perceptual learning; reading; rapid serial visual presentation; central vision loss; psychometric functions
11.  Sensory factors limiting horizontal and vertical visual span for letter recognition 
Journal of Vision  2014;14(9):23.
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
PMCID: PMC4144171
visual span; crowding; reading; vertical text; acuity; mislocation
12.  Factors Affecting Crowded Acuity: Eccentricity and Contrast 
Acuity measurement is a fundamental method to assess visual performance in the clinic. Little is known about how acuity measured in the presence of neighboring letters, as in the case of letter charts, changes with contrast and with non-foveal viewing. This information is crucial for acuity measurement using low-contrast charts and when patients cannot use their fovea. In this study, we evaluated how optotype acuity, with and without flankers, is affected by contrast and eccentricity.
Five young adults with normal vision identified the orientation of a Tumbling-E alone or in the presence of four flanking Tumbling-Es. Edge-to-edge letter spacing ranged from 1 to 20 bar widths. Stimuli were presented on a white background for 150 ms with Weber contrast ranging from −2.5% to −99%. Flankers had the same size and contrast as the target. Testings were performed at the fovea, 3, 5 and 10 degrees in the inferior visual field.
When plotted as a function of letter spacing, acuity remains unaffected by the presence of flankers until the flankers are within the critical spacing, which averages an edge-to-edge spacing of 4.4 bar widths at the fovea, and approximately 16 bar widths at all three eccentricities. Critical spacing decreases with a reduction in contrast. When plotted as a function of contrast, acuity only worsens when the contrast falls below approximately 24% at the fovea and 17% in the periphery, for flanked and unflanked conditions alike.
The letter spacing on conventional letter charts exceeds the critical spacing for acuity measurement at the fovea, at all contrast levels. Thus these charts are appropriate for assessing foveal acuity. In the periphery, the critical spacing is larger than the letter spacing on conventional charts. Consequently, these charts may underestimate the acuity measured in the periphery due to the effects of crowding.
PMCID: PMC3837536  PMID: 23770657
acuity; contrast; eccentricity; crowding; periphery; critical spacing; critical contrast
13.  Learning to identify crowded letters: Does the learning depend on the frequency of training? 
Vision research  2012;77:41-50.
Performance for many visual tasks improves with training. The magnitude of improvement following training depends on the training task, number of trials per training session and the total amount of training. Does the magnitude of improvement also depend on the frequency of training sessions? In this study, we compared the learning effect for three groups of normally sighted observers who repeatedly practiced the task of identifying crowded letters in the periphery for six sessions (1000 trials per session), according to three different training schedules — one group received one session of training everyday, the second group received a training session once a week and the third group once every two weeks. Following six sessions of training, all observers improved in their performance of identifying crowded letters in the periphery. Most importantly, the magnitudes of improvement were similar across the three training groups. The improvement was accompanied by a reduction in the spatial extent of crowding, an increase in the size of visual span and a reduction in letter-size threshold. The magnitudes of these accompanied improvements were also similar across the three training groups. Our finding that the effectiveness of visual perceptual learning is similar for daily, weekly and biweekly training has significant implication for adopting perceptual learning as an option to improve visual functions for clinical patients.
PMCID: PMC3538889  PMID: 23206551
perceptual learning; crowding; letter identification; peripheral vision
14.  Theories of reading should predict reading speed 
The Behavioral and brain sciences  2012;35(5):297-298.
Reading speed matters in most real-world contexts, and it is a robust and easy aspect of reading to measure. Theories of reading should account for speed.
PMCID: PMC3579520  PMID: 22929907
15.  The Mechanism of Word Crowding 
Vision research  2011;52(1):61-69.
Word reading speed in peripheral vision is slower when words are in close proximity of other words (Chung, 2004). This word crowding effect could arise as a consequence of interaction of low-level letter features between words, or the interaction between high-level holistic representations of words. We evaluated these two hypotheses by examining how word crowding changes for five configurations of flanking words: the control condition — flanking words were oriented upright; scrambled — letters in each flanking word were scrambled in order; horizontal-flip — each flanking word was the left-right mirror-image of the original; letter-flip — each letter of the flanking word was the left-right mirror-image of the original; and vertical-flip — each flanking word was the up-down mirror-image of the original. The low-level letter feature interaction hypothesis predicts similar word crowding effect for all the different flanker configurations, while the high-level holistic representation hypothesis predicts less word crowding effect for all the alternative flanker conditions, compared with the control condition. We found that oral reading speed for words flanked above and below by other words, measured at 10° eccentricity in the nasal field, showed the same dependence on the vertical separation between the target and its flanking words, for the various flanker configurations. The result was also similar when we rotated the flanking words by 90° to disrupt the periodic vertical pattern, which presumably is the main structure in words. The remarkably similar word crowding effect irrespective of the flanker configurations suggests that word crowding arises as a consequence of interactions of low-level letter features.
PMCID: PMC3246086  PMID: 22079315
crowding; word recognition; peripheral vision; features; holistic representation
16.  Critical Orientation for Face Identification in Central Vision Loss 
Difficulty identifying faces is a common complaint of people with central vision loss. Dakin and Watt (2009) reported that the horizontal components of face images are most informative for face identification in normal vision. In this study, we examined whether people with central vision loss similarly rely primarily on the horizontal components of face images for face identification.
Seven observers with central vision loss (mean age = 69 ± 9 [SD]) and five age-matched observers with normal vision (mean age = 65 ± 6) participated in the study. We measured observers’ accuracy for reporting the identity of face images spatially filtered using an orientation filter with center orientation ranging from 0° (horizontal) to 150° in steps of 30°, with a bandwidth of 23°. Face images without filtering were also tested.
For all observers, accuracy for identifying filtered face images was highest around the horizontal orientation, dropping systematically as the filter orientation deviated systematically from horizontal, and was the lowest at the vertical orientation. Compared with control observers, observers with central vision loss showed (1) a larger difference in accuracy between identifying filtered (at peak performance) and unfiltered face images; (2) a reduced accuracy at peak performance and (3) a smaller difference in performance for identifying filtered images between the horizontal and the vertical filter orientation.
Spatial information around the horizontal orientation in face images is the most important for face identification, for people with normal vision and central vision loss alike. While the horizontal information alone can support reasonably good performance for identifying faces in people in normal vision, people with central vision loss seem to also rely on information along other orientations.
PMCID: PMC3100384  PMID: 21399554
low vision; spatial vision; psychophysics; face identification; central vision loss
17.  Learning to Identify Near-Acuity Letters, either with or without Flankers, Results in Improved Letter Size and Spacing Limits in Adults with Amblyopia 
PLoS ONE  2012;7(4):e35829.
Amblyopia is a developmental abnormality that results in deficits for a wide range of visual tasks, most notably, the reduced ability to see fine details, the loss in contrast sensitivity especially for small objects and the difficulty in seeing objects in clutter (crowding). The primary goal of this study was to evaluate whether crowding can be ameliorated in adults with amblyopia through perceptual learning using a flanked letter identification task that was designed to reduce crowding, and if so, whether the improvements transfer to untrained visual functions: visual acuity, contrast sensitivity and the size of visual span (the amount of information obtained in one fixation). To evaluate whether the improvements following this training task were specific to training with flankers, we also trained another group of adult observers with amblyopia using a single letter identification task that was designed to improve letter contrast sensitivity, not crowding. Following 10,000 trials of training, both groups of observers showed improvements in the respective training task. The improvements generalized to improved visual acuity, letter contrast sensitivity, size of the visual span, and reduced crowding. The magnitude of the improvement for each of these measurements was similar in the two training groups. Perceptual learning regimens aimed at reducing crowding or improving letter contrast sensitivity are both effective in improving visual acuity, contrast sensitivity for near-acuity objects and reducing the crowding effect, and could be useful as a clinical treatment for amblyopia.
PMCID: PMC3340394  PMID: 22558234
18.  Influence of Motion Smear on Visual Acuity in Simulated Infantile Nystagmus 
In persons with infantile nystagmus (IN), visual acuity correlates with the duration of the foveation period of the nystagmus waveform, i.e., when the retinal image is on or near the fovea and moves with low velocity. In this study, we asked how acuity is affected by the non-foveating phases of the nystagmus waveform, when the velocity of retinal image motion is substantially higher.
Visual acuity was measured in three normal observers for high-contrast, 4-orientation Ts, presented during image motion that simulated either the whole jerk-IN waveform (whole-waveform) or only the foveation periods of the IN waveform (foveation-only). Simulated foveation durations ranged from 20 to 120 ms. For both motion waveforms, we displayed the acuity target for different number of cycles to examine if acuity benefits from multiple presentations of the stimulus.
As expected, visual acuity improves with longer simulated foveation durations in both the whole-waveform and foveation-only conditions. Acuity is consistently better (by approximately 0.1 logMAR) in the foveation-only than the whole-waveform condition, indicating that the high-velocity image motion during the simulated IN waveform has a detrimental effect. This difference in acuity between the two waveform conditions increases with the number of cycles, apparently because summation occurs across cycles in the foveation-only condition but not in the whole-waveform condition.
In normal observers, visual acuity in the presence of a simulated nystagmus waveform is limited not only by the duration of the foveation periods, but also by the non-foveating phases of the waveform. However, because persons with IN report little or no motion smear in association with their nystagmus, it remains unclear whether the rapid retinal image motion during the non-foveating phases of the nystagmus waveform generates a similar degradation of visual acuity in IN.
PMCID: PMC3032354  PMID: 21200353
image motion; visual acuity; temporal summation; probability summation; infantile nystagmus; foveation period
19.  Ideal observer analysis of crowding and the reduction of crowding through learning 
Journal of vision  2010;10(5):16.
Crowding is a prominent phenomenon in peripheral vision where nearby objects impede one’s ability to identify a target of interest. The precise mechanism of crowding is not known. We used ideal observer analysis and a noise-masking paradigm to identify the functional mechanism of crowding. We tested letter identification in the periphery with and without flanking letters and found that crowding increases equivalent input noise and decreases sampling efficiency. Crowding effectively causes the signal from the target to be noisier and at the same time reduces the visual system’s ability to make use of a noisy signal. After practicing identification of flanked letters without noise in the periphery for 6 days, subjects’ performance for identifying flanked letters improved (reduction of crowding). Across subjects, the improvement was attributable to either a decrease in crowding-induced equivalent input noise or an increase in sampling efficiency, but seldom both. This pattern of results is consistent with a simple model whereby learning reduces crowding by adjusting the spatial extent of a perceptual window used to gather relevant input features. Following learning, subjects with inappropriately large windows reduced their window sizes; while subjects with inappropriately small windows increased their window sizes. The improvement in equivalent input noise and sampling efficiency persists for at least 6 months.
PMCID: PMC3096759  PMID: 20616136
peripheral vision; crowding; perceptual learning; ideal observer analysis
20.  Reading Speed in the peripheral visual field of older adults: Does it benefit from perceptual learning? 
Vision research  2010;50(9):860-869.
Enhancing reading ability in peripheral vision is important for the rehabilitation of people with central-visual-field loss from age-related macular degeneration (AMD). Previous research has shown that perceptual learning, based on a trigram letter-recognition task, improved peripheral reading speed among normally-sighted young adults (Chung, Legge & Cheung, 2004). Here we ask whether the same happens in older adults in an age range more typical of the onset of AMD. Eighteen normally-sighted subjects, aged 55 to 76 years, were randomly assigned to training or control groups. Visual-span profiles (plots of letter-recognition accuracy as a function of horizontal letter position) and RSVP reading speeds were measured at 10° above and below fixation during pre- and post-tests for all subjects. Training consisted of repeated measurements of visual-span profiles at 10° below fixation, in 4 daily sessions. The control subjects did not receive any training. Perceptual learning enlarged the visual spans in both trained (lower) and untrained (upper) visual fields. Reading speed improved in the trained field by 60% when the trained print size was used. The training benefits for these older subjects were weaker than the training benefits for young adults found by Chung et al. Despite the weaker training benefits, perceptual learning remains a potential option for low-vision reading rehabilitation among older adults.
PMCID: PMC2858588  PMID: 20156473
21.  Development of a training protocol to improve reading performance in peripheral vision 
Vision research  2010;50(1):36-45.
People with central-field loss must use peripheral vision for reading. Previous studies have shown that reading performance in peripheral vision can improve with extensive practice on a trigram letter-recognition task. The present study compared training on this task with training on two other character-based tasks (lexical decision and RSVP (Rapid Serial Visual Presentation) reading) which might plausibly produce more improvement in peripheral reading speed. Twenty-eight normally sighted young adults were trained at 10° in the lower visual field in a pre/post design. All three training methods produced significant improvements in reading speed, with average gains of 39% for lexical-decision, 54% for trigram letter-recognition, and 72% for RSVP training. Although the RSVP training was most effective, the lexical-decision task has the advantage of easy self administration making it more practical for home-based training.
PMCID: PMC2794940  PMID: 19819251
visual span; reading speed; perceptual learning; peripheral vision; visual training
22.  Contrast polarity differences reduce crowding but do not benefit reading performance in peripheral vision 
Vision research  2009;49(23):2782-2789.
Previous studies have shown that the spatial extent of crowding in peripheral vision is reduced when a target letter and its flanking letters have opposite contrast polarity. We have examined if this reduction in crowding leads to improved reading performance. We compared the spatial extent of crowding, visual-span profiles (plots of letter-recognition accuracy versus letter position), and reading speed at 10 deg inferior visual field, using white letters, black letters, or mixtures of white and black letters, presented on a mid-gray background. Consistent with previous studies, the spatial extent of crowding was reduced when the target and flanking letters had opposite contrast polarity. However, using mixed contrast polarity did not lead to improvements in visual-span profiles or reading speed.
PMCID: PMC2783877  PMID: 19695281
reading; crowding; contrast polarity; visual span; peripheral vision
23.  Using visual noise to characterize amblyopic letter identification 
Journal of vision  2004;4(10):904-920.
Amblyopia is a much-studied but poorly understood developmental visual disorder that reduces acuity, profoundly reducing contrast sensitivity for small targets. Here we use visual noise to probe the letter identification process and characterize its impairment by amblyopia. We apply five levels of analysis — threshold, threshold in noise, equivalent noise, optical MTF, and noise modeling — to obtain a two-factor model of the amblyopic deficit: substantially reduced efficiency for small letters and negligibly increased cortical noise. Cortical noise, expressed as an equivalent input noise, varies among amblyopes but is roughly 1.4× normal, as though only 1/1.4 the normal number of cortical spikes are devoted to the amblyopic eye. This raises threshold contrast for large letters by a factor of √1.4 = 1.2×, a negligible effect. All 16 amblyopic observers showed near-normal efficiency for large letters (> 4× acuity) and greatly reduced efficiency for small letters: 1/4 normal at 2× acuity and approaching 1/16 normal at acuity. Finding that the acuity loss represents a loss of efficiency rules out all models of amblyopia except those that predict the same sensitivity loss on blank and noisy backgrounds. One such model is the last-channel hypothesis, which supposes that the highest-spatial-frequency channels are missing, leaving the remaining highest-frequency channel struggling to identify the smallest letters. However, this hypothesis is rejected by critical band masking of letter identification, which shows that the channels used by the amblyopic eye have normal tuning for even the smallest letters. Finally, based on these results, we introduce a new “Dual Acuity” chart that promises to be a quick diagnostic test for amblyopia.
PMCID: PMC2751822  PMID: 15595894
amblyopia; noise; efficiency; cortical noise; Pelli-Levi Dual Acuity Chart
24.  Reading Speed Benefits from Increased Vertical Word Spacing in Normal Peripheral Vision 
Crowding, the adverse spatial interaction due to proximity of adjacent targets, has been suggested as an explanation for slow reading in peripheral vision. The purposes of this study were to (1) demonstrate that crowding exists at the word level and (2) examine whether or not reading speed in central and peripheral vision can be enhanced with increased vertical word spacing.
Five normal observers read aloud sequences of six unrelated four-letter words presented on a computer monitor, one word at a time, using rapid serial visual presentation (RSVP). Reading speeds were calculated based on the RSVP exposure durations yielding 80% correct. Testing was conducted at the fovea and at 5° and 10° in the inferior visual field. Critical print size (CPS) for each observer and at each eccentricity was first determined by measuring reading speeds for four print sizes using unflanked words. We then presented words at 0.8× or 1.4× CPS, with each target word flanked by two other words, one above and one below the target word. Reading speeds were determined for vertical word spacings (baseline-to-baseline separation between two vertically separated words) ranging from 0.8× to 2× the standard single-spacing, as well as the unflanked condition.
At the fovea, reading speed increased with vertical word spacing up to about 1.2× to 1.5× the standard spacing and remained constant and similar to the unflanked reading speed at larger vertical word spacings. In the periphery, reading speed also increased with vertical word spacing, but it remained below the unflanked reading speed for all spacings tested. At 2× the standard spacing, peripheral reading speed was still about 25% lower than the unflanked reading speed for both eccentricities and print sizes. Results from a control experiment showed that the greater reliance of peripheral reading speed on vertical word spacing was also found in the right visual field.
Increased vertical word spacing, which presumably decreases the adverse effect of crowding between adjacent lines of text, benefits reading speed. This benefit is greater in peripheral than central vision.
PMCID: PMC2734885  PMID: 15252352
crowding; reading; peripheral vision; low vision
25.  Effect of letter spacing on visual span and reading speed 
Journal of vision  2007;7(2):2.1-210.
S. T. L. Chung (2002) has shown that rapid serial visual presentation (RSVP) reading speed varies with letter spacing, peaking near the standard letter spacing for text and decreasing for both smaller and larger spacings. In this study, we tested the hypothesis that the dependence of reading speed on letter spacing is mediated by the size of the visual span—the number of letters recognized with high accuracy without moving the eyes. If so, the size of the visual span and reading speed should show a similar dependence on letter spacing. We tested this prediction for RSVP reading and asked whether it generalizes to the reading of blocks of text requiring eye movements. We measured visual-span profiles and reading speeds as a function of letter spacing. Visual-span profiles, measured with trigrams (strings of three random letters), are plots of letter-recognition accuracy as a function of letter position left or right of fixation. Size of the visual span was quantified by a measure of the area under the visual-span profile. Reading performance was measured using two presentation methods: RSVP and flashcard (a short block of text on four lines). We found that the size of the visual span and the reading speeds measured by the two presentation methods showed a qualitatively similar dependence on letter spacing and that they were highly correlated. These results are consistent with the view that the size of the visual span is a primary visual factor that limits reading speed.
PMCID: PMC2729067  PMID: 18217817
visual span; reading speed; letter spacing; visual crowding

Results 1-25 (44)