PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth 
Genes & cancer  2010;1(8):868-876.
Elevated interleukin-6 (IL-6), a major mediator of the inflammatory response, has been implicated in androgen receptor (AR) activation, cellular growth and differentiation, plays important roles in the development and progression of prostate cancer, and is a potential target in cancer therapy. Through drug screening using human prostate cancer cells expressing IL-6 autocrine loop, we found that andrographolide, a diterpenoid lactone isolated from a traditional Chinese and Indian medicinal plant Andrographis paniculata, could inhibit IL-6 expression and suppress IL-6-mediated signals. Andrographolide inhibits IL-6 expression at both mRNA and protein levels in a dose-dependent manner. Andrographolide suppresses both IL-6 autocrine- and IL-6 paracrine-loop induced cell signaling including Stat3 and Erk phosphorylation. Furthermore, andrographolide inhibits cell viability and induces apoptotic cell death in both androgen-stimulated and castration-resistant human prostate cancer cells without causing significant toxicity to normal immortalized prostate epithelial cells. Moreover, treatment of andrographolide to mice bearing castration-resistant DU145 human prostate tumors that express constitutive IL-6 autocrine loop significantly suppresses tumor growth. Taken together, these results demonstrate that andrographolide could be developed as a therapeutic agent to treat both androgen-stimulated and castration-resistant prostate cancer possibly by suppressing IL-6 expression and IL-6-induced signaling.
doi:10.1177/1947601910383416
PMCID: PMC3063649  PMID: 21442031
Prostate cancer; Interleukin-6; Andrographolide
2.  Interleukin-6 Regulates Androgen Synthesis in Prostate Cancer Cells 
Purpose
The standard systemic treatment for prostate cancer patients is androgen deprivation therapy. Although serum testosterone concentrations were significantly reduced after androgen deprivation therapy, levels of intraprostatic androgens are reproducibly measured at concentrations sufficient to activate androgen receptor and stimulate tumor growth, suggesting that prostate cancer cells may survive androgen deprivation therapies by increasing intracrine androgen synthesis within the prostate. However, factors that regulate de novo intracrine androgen synthesis have not been identified. Interleukin-6 (IL-6) has been implicated in the modulation of androgen receptor activation and growth and differentiation in prostate cancer. In this study, we investigate whether IL-6 regulates intraprostatic androgen synthesis in prostate cancer cells.
Experimental Design
Quantitative reverse transcription-PCR and Western blotting were done to detect expression levels of steroidogenic enzymes. AKR1C3 promoter reporter was constructed and analyzed for IL-6–mediated AKR1C3 transcriptional activity. IL-6–mediated signaling was knocked down using small interfering RNA specific to IL-6 receptor and gp130, and the effect on AKR1C3 expression was examined. Intraprostatic androgen levels in prostate cancer cells in culture and in tumors were measured by an enzyme immunoassay (Testosterone EIA kit).
Results
We found that IL-6 increases the expression of genes encoding many steroidogenic enzymes, including HSD3B2 and AKR1C3, involved in androgen biosynthesis. Down-regulation of IL-6 receptor and gp130 expression using specific small interfering RNA abolished IL-6–mediated AKR1C3 expression, suggesting that IL-6 signaling is responsible for AKR1C3 expression. IL-6 increases AKR1C3 promoter activity, indicating that the increase in IL-6–mediated AKR1C3 expression is in part at the transcriptional level. Treatment of IL-6 increased testosterone level in LNCaP cells. The tumor testosterone levels were detected at 378 pg/g in tumors generated from IL-6–overexpressing LNCaP-IL6+ cells inoculated orthotopically into the prostates of castrated male nude mice.
Conclusions
These results suggest that IL-6 increases levels of intracrine androgens through enhanced expression of genes mediating androgen metabolism in prostate cancer cells.
doi:10.1158/1078-0432.CCR-09-0640
PMCID: PMC3041150  PMID: 19638459
3.  Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2 
Molecular cancer therapeutics  2009;8(3):665-671.
The standard treatment for advanced, androgen-responsive prostate cancer is androgen deprivation therapy with or without a nonsteroidal antiandrogen, such as bicalutamide. Although maximal androgen blockade exhibits favorable responses in the majority of patients, prostate cancer eventually progresses to an androgen-refractory stage. The mechanism underlying bicalutamide resistance in the course of prostate cancer progression is incompletely understood. However, interleukin-6 (IL-6) plays a critical role in the development and progression of CRPC. Herein, we explored an association between IL-6 and bicalutamide resistance. To study this, series of lower and higher passages of LNCaP cell sublines generated by long-term exposure to IL-6 were used. The cells from higher passages of LNCaP treated with IL-6 developed resistance to bicalutamide treatment compared with parental LNCaP cells. The levels of transcriptional intermediary factor 2 (TIF2) in IL-6-treated LNCaP cells were found to be significantly higher than parental LNCaP cells. Down-regulation of TIF2 expression via short hairpin RNA in IL-6-treated LNCaP cells sensitized these cells to bicalutamide treatment, whereas overexpression of TIF2 in the parental LNCaP cells increased resistance to bicalutamide. Furthermore, overexpression of IL-6 attenuated bicalutamide-mediated blockage of androgen-induced androgen receptor nuclear translocation and recruitment. These results show that overexpression of IL-6 increases the resistance of prostate cancer cells to bicalutamide via TIF2. Overexpression of IL-6 not only plays an important role in prostate cancer progression but also contributes to bicalutamide resistance. Our studies suggest that bicalutamide-IL-6-targeted adjunctive therapy may lead to a more effective intervention than bicalutamide alone.
doi:10.1158/1535-7163.MCT-08-0823
PMCID: PMC3041173  PMID: 19240160
4.  Interleukin-4 activates androgen receptor through CBP/p300 
The Prostate  2009;69(2):126-132.
Background
Aberrant activation of androgen receptor (AR) plays an important role in the progression of castration resistant prostate cancer. Interleukin-4 (IL-4) enhances AR activation in the absence of androgen and stimulates castration resistant growth of androgen-sensitive prostate cancer cells. However, the mechanism of IL-4 mediated AR activation has not yet been revealed.
Methods
The effect of IL-4 on CBP/p300 expression was examined by Western blot analysis. The effect of IL-4 on the interactions of AR and CBP/p300 was examined by co-immunoprecipitation and ChIP assays. CBP/p300 siRNA was used to knockdown CBP/p300 expression to examine the role of CBP/p300 expression on IL-4 mediated AR activation.
Results
We found that IL-4 increases CBP/p300 protein expression and enhances interaction of AR with CBP/p300 proteins through an increase in the recruitment of CBP/p300 protein to the androgen responsive elements in the promoters of androgen responsive genes. Down regulation of CBP/p300 expression using CBP/p300 specific siRNA abolished IL-4 mediated AR activation, suggesting that CBP/p300 is responsible for AR activation induced by IL-4. Furthermore, AR activation can be enhanced by AR acetylation induced by IL-4 in prostate cancer cells. The IL-4 mediated AR acetylation can be blocked by knocking down CBP/p300 expression using CBP/p300 specific siRNA.
Conclusion
These results suggest that IL-4 activates AR through enhanced expression of CBP/p300 and its histone acetyltransferase activity.
doi:10.1002/pros.20865
PMCID: PMC3035998  PMID: 18819102
Interleukin-4; CBP/p300; AR; prostate cancer
5.  Sanguinarine Suppresses Prostate Tumor Growth and Inhibits Survivin Expression 
Genes & cancer  2010;1(3):283-292.
Prostate cancer is a frequently occurring disease and is the second leading cause of cancer-related deaths of men in the United States. Current treatments have proved inadequate in curing or controlling prostate cancer, and a search for agents for the management of this disease is urgently needed. Survivin plays an important role in both progression of castration-resistant prostate cancer and resistance to chemotherapy. Altered expression of survivin in prostate cancer cells is associated with cancer progression, drug/radiation resistance, poor prognosis, and short patient survival. In the present study, the authors performed a cell-based rapid screen of the Prestwick Chemical Library consisting of 1120 Food and Drug Administration–approved compounds with known safety and bioavailability in humans to identify potential inhibitors of survivin and anticancer agents for prostate cancer. Sanguinarine, a benzophenanthridine alkaloid derived primarily from the bloodroot plant, was identified as a novel inhibitor of survivin that selectively kills prostate cancer cells over “normal” prostate epithelial cells. The authors found that sanguinarine inhibits survivin protein expression through protein degradation via the ubiquitin-proteasome system. Sanguinarine induces apoptosis and inhibits growth of human prostate cancer cells and in vivo tumor formation. Administration of sanguinarine, beginning 3 days after ectopic implantation of DU145 human prostate cancer cells, reduces both tumor weight and volume. In addition, sanguinarine sensitized paclitaxel-mediated growth inhibition and apoptosis, offering a potential therapeutic strategy for overcoming taxol resistance. These results suggest that sanguinarine may be developed as an agent either alone or in combination with taxol for treatment of prostate cancer overexpressing survivin.
doi:10.1177/1947601910368849
PMCID: PMC3036540  PMID: 21318089
prostate cancer; survivin; sanguinarine
6.  Andrographolide Targets Androgen Receptor Pathway in Castration-Resistant Prostate Cancer 
Genes & Cancer  2011;2(2):151-159.
Androgen receptor (AR) signaling not only plays a pivotal role in the development of androgen-dependent prostate cancer but is also important in the growth and survival of castration-resistant prostate cancer (CRPC). The first line of treatment of androgen-dependent prostate cancer is the use of androgen deprivation therapy. However, most patients will eventually relapse due to development of CRPC. Thus, development of a strategy to target AR for treatment of CRPC is urgently needed. The authors have previously identified andrographolide as an inhibitor of interleukin-6, which can suppress tumor growth of prostate cancer cells by screening compounds from the Prestwick Natural compound library. In this study, they identified that andrographolide can inhibit AR expression and prostate cancer cell growth and induce apoptosis. Andrographolide is able to down-regulate AR expression at both mRNA and protein levels, prevents its nuclear translocation, and inhibits transactivation of its target genes. Andrographolide prevents the binding of Hsp90 to AR, resulting in proteasome-mediated AR degradation. Furthermore, andrographolide inhibits castration-resistant C4-2 cell growth by reducing AR expression and activity. Thus, andrographolide can be developed as a potential therapeutic agent for prostate cancer by inhibition of androgen receptor signaling.
doi:10.1177/1947601911409744
PMCID: PMC3111248  PMID: 21779488
prostate cancer; androgen receptor; andrographolide
7.  Andrographolide, an Herbal Medicine, Inhibits Interleukin-6 Expression and Suppresses Prostate Cancer Cell Growth 
Genes & Cancer  2010;1(8):868-876.
Elevated interleukin-6 (IL-6), a major mediator of the inflammatory response, has been implicated in androgen receptor (AR) activation, cellular growth and differentiation, plays important roles in the development and progression of prostate cancer, and is a potential target in cancer therapy. Through drug screening using human prostate cancer cells expressing IL-6 autocrine loop, we found that andrographolide, a diterpenoid lactone isolated from a traditional Chinese and Indian medicinal plant Andrographis paniculata, could inhibit IL-6 expression and suppress IL-6–mediated signals. Andrographolide inhibits IL-6 expression at both mRNA and protein levels in a dose-dependent manner. Andrographolide suppresses both IL-6 autocrine loop– and paracrine loop–induced cell signaling including Stat3 and Erk phosphorylation. Furthermore, andrographolide inhibits cell viability and induces apoptotic cell death in both androgen-stimulated and castration-resistant human prostate cancer cells without causing significant toxicity to normal immortalized prostate epithelial cells. Moreover, treatment of andrographolide to mice bearing castration-resistant DU145 human prostate tumors that express constitutive IL-6 autocrine loop significantly suppresses tumor growth. Taken together, these results demonstrate that andrographolide could be developed as a therapeutic agent to treat both androgen-stimulated and castration-resistant prostate cancer possibly by suppressing IL-6 expression and IL-6–induced signaling.
doi:10.1177/1947601910383416
PMCID: PMC3063649  PMID: 21442031
prostate cancer; interleukin-6; andrographolide
8.  Sanguinarine Suppresses Prostate Tumor Growth and Inhibits Survivin Expression 
Genes & Cancer  2010;1(3):283-292.
Prostate cancer is a frequently occurring disease and is the second leading cause of cancer-related deaths of men in the United States. Current treatments have proved inadequate in curing or controlling prostate cancer, and a search for agents for the management of this disease is urgently needed. Survivin plays an important role in both progression of castration-resistant prostate cancer and resistance to chemotherapy. Altered expression of survivin in prostate cancer cells is associated with cancer progression, drug/radiation resistance, poor prognosis, and short patient survival. In the present study, the authors performed a cell-based rapid screen of the Prestwick Chemical Library consisting of 1120 Food and Drug Administration–approved compounds with known safety and bioavailability in humans to identify potential inhibitors of survivin and anticancer agents for prostate cancer. Sanguinarine, a benzophenanthridine alkaloid derived primarily from the bloodroot plant, was identified as a novel inhibitor of survivin that selectively kills prostate cancer cells over “normal” prostate epithelial cells. The authors found that sanguinarine inhibits survivin protein expression through protein degradation via the ubiquitin-proteasome system. Sanguinarine induces apoptosis and inhibits growth of human prostate cancer cells and in vivo tumor formation. Administration of sanguinarine, beginning 3 days after ectopic implantation of DU145 human prostate cancer cells, reduces both tumor weight and volume. In addition, sanguinarine sensitized paclitaxel-mediated growth inhibition and apoptosis, offering a potential therapeutic strategy for overcoming taxol resistance. These results suggest that sanguinarine may be developed as an agent either alone or in combination with taxol for treatment of prostate cancer overexpressing survivin.
doi:10.1177/1947601910368849
PMCID: PMC3036540  PMID: 21318089
prostate cancer; survivin; sanguinarine
9.  Selenium inhibition of survivin expression by preventing Sp1 binding to its promoter 
Survivin, an antiapoptotic protein highly expressed in cancer, regulates multiple cellular network associated with cancer cell viability and drug resistance. Inhibition of survivin expression has been pursued as a valid cancer therapeutic target. In this study, we showed that selenium, an effective chemopreventive agent for many types of cancers, down-regulated survivin expression. Selenium inhibited survivin expression in both mRNA and protein levels in a dose- and time-dependent manner. Using a series of survivin promoter–luciferase constructs, a 37-bp DNA element in the survivin core promoter region that mediates the ability of selenium to inhibit survivin transcription was identified. Gel mobility shift assays and chromatin immunoprecipitation analyses revealed that selenium prevents the binding of Sp1 or Sp1-like proteins to the 37-bp cis-acting DNA element in the survivin promoter. Furthermore, inhibition of survivin expression by small interfering RNA enhanced selenium’s inhibitory effects on cell growth, whereas overexpression of survivin in LNCaP human prostate cancer cells desensitized cancer cells to selenium effect, suggesting that the expression of survivin plays an important role in determining the response of cancer cells to selenium. Taken together, these results suggest that selenium down-regulated survivin expression by preventing the binding of Sp1 or Sp1-like proteins to the promoter of survivin, which contributes at least in part to the inhibitory effect of selenium on survivin gene transcription. In addition, down-regulation of survivin expression may account for one of the molecular mechanisms of the anticancer effects of selenium.
doi:10.1158/1535-7163.MCT-07-0172
PMCID: PMC2821810  PMID: 17876054
10.  LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway 
Stat3, a member of the signal transducers and activators of transcription (STAT) family, is a key signal transduction protein activated by numerous cytokines, growth factors and oncoproteins that controls cell proliferation, differentiation, development, survival and inflammation. Constitutive activation of Stat3 has been found frequently in a wide variety of human tumors and induces cellular transformation and tumor formation. In this study, we demonstrated that LIGHT, a member of tumor necrosis factor superfamily, activates Stat3 in cancer cells. LIGHT induces dose dependent activation of Stat3 by phosphorylation at both the tyrosine 705 and serine 727 residues. The activation of Stat3 by LIGHT appears to be mediated by NIK phosphorylation. Expression of a kinase-inactive NIK mutant abolished LIGHT induced Stat3 activation. Overexpression of an active NIK induces Stat3 activation by phosphorylation at the both tyrosine 705 and serine 727 residues. Activation of Stat3 by NIK requires NIK kinase activity as showed by kinase assays. In addition, LIGHT increases the expression of Stat3 target genes including cyclin D1, survivin, and Bcl-xL, and stimulates human LNCaP prostate cancer cell growth in vitro which can by blocked by expression of a dominant-negative Stat3 mutant. Taken together, these results indicate that in addition to activating NF-κB/p52, LIGHT also activates Stat3. Activation of Stat3 together with activating non-canonical NF-κB/p52 signaling by LIGHT may maximize its effects on cellular proliferation, survival, and inflammation.
doi:10.1016/j.bbrc.2007.05.119
PMCID: PMC2062522  PMID: 17543278
Stat3; LIGHT; NIK; Prostate

Results 1-10 (10)