PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Chu, honei")
1.  IL-4 confers resistance to IL-27-mediated suppression on CD4+ T cells by impairing STAT1 signaling 
Background
Th2 cells play a critical role in the pathogenesis of allergic asthma. Established Th2 cells have been shown to resist reprogramming into Th1 cells. The inherent stability of Th2 cells poses a significant barrier to treating allergic diseases.
Objective
We sought to understand the mechanisms by which CD4+ T cells from asthmatic patients resist the IL-27-mediated inhibition.
Methods
We isolated and cultured CD4+ T cells from both healthy individuals and allergic asthmatic patients in order to test whether IL-27 can inhibit IL-4 production by the cultured CD4+ T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined using both murine and human CD4+ T cell culture systems. STAT1 phosphorylation was analyzed by Western blot and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA.
Main Results
We demonstrated that CD4+ T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to Th2-inducing conditions rendered healthy human CD4+ T cells resistant to IL-27-mediated inhibition. Using an in vitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The Knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4-production.
Conclusions
Our findings demonstrate that differentiated Th2 cells can resist IL-27-induced reprogramming toward Th1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4+ T cells of asthmatic patients are resistant to IL-27-mediated inhibition.
doi:10.1016/j.jaci.2013.06.035
PMCID: PMC3788709  PMID: 23958647
asthma; Th2 stability; IL-4; STAT1 signaling; SOCS3; IL-27
2.  Sub-chronic exposure to second hand smoke induces airspace leukocyte infiltration and decreased lung elastance 
Exposure to second hand tobacco smoke is associated with the development and/or exacerbation of several different pulmonary diseases in humans. To better understand the possible effects of second hand smoke exposure in humans, we sub-chronically (4 weeks) exposed mice to a mixture of mainstream and sidestream tobacco smoke at concentrations similar to second hand smoke exposure in humans. The inflammatory response to smoke exposures was assessed at the end of this time by enumeration of pulmonary leukocyte infiltration together with measurements of lung elastance and pathology. This response was measured in both healthy wild type (C57BL/6) mice as well as mouse mutants deficient in the expression of Arhgef1 (Arhgef1−/−) that display constitutive pulmonary inflammation and decreased lung elastance reminiscent of emphysema. The results from this study show that sub-chronic second hand smoke exposure leads to significantly increased numbers of airspace leukocytes in both healthy and mutant animals. While sub-chronic cigarette smoke exposure is not sufficient to induce changes in lung architecture as measured by mean linear intercept, both groups exhibit a significant decrease in lung elastance. Together these data demonstrate that even sub-chronic exposure to second hand smoke is sufficient to induce pulmonary inflammation and decrease lung elastance in both healthy and diseased animals and in the absence of tissue destruction.
doi:10.3389/fphys.2012.00300
PMCID: PMC3429071  PMID: 22934051
second hand smoke; inflammation; lung mechanics

Results 1-2 (2)