PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Targeted Deletion of the Gene Encoding the La Autoantigen (Sjögren's Syndrome Antigen B) in B Cells or the Frontal Brain Causes Extensive Tissue Loss 
Molecular and Cellular Biology  2014;34(1):123-131.
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.
doi:10.1128/MCB.01010-13
PMCID: PMC3911279  PMID: 24190965
2.  RNase H2 roles in genome integrity revealed by unlinking its activities 
Nucleic Acids Research  2013;41(5):3130-3143.
Ribonuclease H2 (RNase H2) protects genome integrity by its dual roles of resolving transcription-related R-loops and ribonucleotides incorporated in DNA during replication. To unlink these two functions, we generated a Saccharomyces cerevisiae RNase H2 mutant that can resolve R-loops but cannot cleave single ribonucleotides in DNA. This mutant definitively correlates the 2–5 bp deletions observed in rnh201Δ strains with single rNMPs in DNA. It also establishes a connection between R-loops and Sgs1-mediated replication reinitiation at stalled forks and identifies R-loops uniquely processed by RNase H2. In mouse, deletion of any of the genes coding for RNase H2 results in embryonic lethality, and in humans, RNase H2 hypomorphic mutations cause Aicardi–Goutières syndrome (AGS), a neuroinflammatory disorder. To determine the contribution of R-loops and rNMP in DNA to the defects observed in AGS, we characterized in yeast an AGS-related mutation, which is impaired in processing both substrates, but has sufficient R-loop degradation activity to complement the defects of rnh201Δ sgs1Δ strains. However, this AGS-related mutation accumulates 2–5 bp deletions at a very similar rate as the deletion strain.
doi:10.1093/nar/gkt027
PMCID: PMC3597693  PMID: 23355612
3.  RNase H2-Initiated Ribonucleotide Excision Repair 
Molecular cell  2012;47(6):980-986.
SUMMARY
Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about 2 per kb which makes them by far the most abundant form of potential DNA damage in the cell. Their removal is essential for restoring a stable intact chromosome. Here we present a complete biochemical reconstitution of the ribonucleotide excision repair (RER) pathway with enzymes purified from Saccharomyces cerevisiae. RER is most efficient when the ribonucleotide is incised by RNase H2, and further excised by the flap endonuclease FEN1 with strand displacement synthesis carried out by DNA polymerase δ, the PCNA clamp, its loader RFC, and completed by DNA ligase I. We observed partial redundancy for several of the enzymes in this pathway. Exo1 substitutes for FEN1 and Pol ε for Pol δ with reasonable efficiency. However, RNase H1 fails to substitute for RNase H2 in the incision step of RER.
doi:10.1016/j.molcel.2012.06.035
PMCID: PMC3470915  PMID: 22864116
4.  A New Twist for Topisomerase 1 
Science (New York, N.Y.)  2011;332(6037):1510-1511.
doi:10.1126/science.1208450
PMCID: PMC3171735  PMID: 21700860
5.  Effect of the disease-causing mutations identified in human RNase H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII 
The FEBS journal  2008;275(19):4836-4849.
Summary
Eukaryotic RNases H2 consist of one catalytic and two accessory subunits. Several single mutations in any one of these subunits of human RNase H2 cause Aicardi-Goutières syndrome. To examine whether these mutations affect complex stability and activity of RNase H2, three mutant proteins of His-tagged Saccharomyces cerevisiae RNase H2 (Sc-RNase H2*) were constructed. Sc-G42S*, Sc-L52R*, and Sc-K46W* contain single mutations in Sc-Rnh2Ap*, Sc-Rnh2Bp*, and Sc-Rnh2Cp*, respectively. The genes encoding three subunits were co-expressed in E. coli and Sc-RNase H2* and its derivatives were purified in a heterotrimeric form. All of these mutant proteins exhibited enzymatic activity. However, only the enzymatic activity of Sc-G42S* was greatly reduced as compared to that of the wild-type protein. Gly42 is conserved as Gly10 in Thermococcus kodakareansis RNase HII (Tk-RNase HII). To analyze the role of this residue, four mutant proteins Tk-G10S, Tk-G10A, Tk-G10L, and Tk-G10P were constructed. All mutant proteins were less stable than the wild-type protein by 2.9–7.6°C in Tm. Comparison of their enzymatic activities, substrate binding affinities, and CD spectra suggest that introduction of a bulky side chain into this position induces a local conformational change, which is unfavorable for both activity and substrate binding. These results indicate that Gly10 is required to make the protein fully active and stable. The findings that the mutations in the accessory subunits of Sc-RNase H2* do not seriously affect the enzymatic activity suggest that the mutant forms of the protein are relatively unstable or interactions with other proteins are perturbed in human cells.
doi:10.1111/j.1742-4658.2008.06622.x
PMCID: PMC3178050  PMID: 18721139
Type 2 RNase H; Thermococcus kodakaraensis; Saccharomyces cerevisiae; heterotrimer; site-directed mutagenesis
6.  The Structural and Biochemical Characterization of Human RNase H2 Complex Reveals the Molecular Basis for Substrate Recognition and Aicardi-Goutières Syndrome Defects* 
The Journal of Biological Chemistry  2010;286(12):10540-10550.
RNase H2 cleaves RNA sequences that are part of RNA/DNA hybrids or that are incorporated into DNA, thus, preventing genomic instability and the accumulation of aberrant nucleic acid, which in humans induces Aicardi-Goutières syndrome, a severe autoimmune disorder. The 3.1 Å crystal structure of human RNase H2 presented here allowed us to map the positions of all 29 mutations found in Aicardi-Goutières syndrome patients, several of which were not visible in the previously reported mouse RNase H2. We propose the possible effects of these mutations on the protein stability and function. Bacterial and eukaryotic RNases H2 differ in composition and substrate specificity. Bacterial RNases H2 are monomeric proteins and homologs of the eukaryotic RNases H2 catalytic subunit, which in addition possesses two accessory proteins. The eukaryotic RNase H2 heterotrimeric complex recognizes RNA/DNA hybrids and (5′)RNA-DNA(3′)/DNA junction hybrids as substrates with similar efficiency, whereas bacterial RNases H2 are highly specialized in the recognition of the (5′)RNA-DNA(3′) junction and very poorly cleave RNA/DNA hybrids in the presence of Mg2+ ions. Using the crystal structure of the Thermotoga maritima RNase H2-substrate complex, we modeled the human RNase H2-substrate complex and verified the model by mutational analysis. Our model indicates that the difference in substrate preference stems from the different position of the crucial tyrosine residue involved in substrate binding and recognition.
doi:10.1074/jbc.M110.181974
PMCID: PMC3060507  PMID: 21177858
DNA Repair; Protein-DNA Interaction; Protein Structure; Ribonuclease; X-ray Crystallography; Aicardi-Goutières Syndrome; RNA/DNA Hybrid; RNase H2
7.  Crystal Structures of RNase H2 in Complex with Nucleic Acid Reveal the Mechanism of RNA-DNA Junction Recognition and Cleavage 
Molecular Cell  2010;40(4):658-670.
Summary
Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5′)RNA-DNA(3′) junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair.
Highlights
► Structures of RNase H2 in complex with nucleic acid substrate reported ► The mechanism of specific recognition of (5′)RNA-DNA(3′) junction revealed ► Specific deformation of the junction leads to substrate-assisted catalysis
doi:10.1016/j.molcel.2010.11.001
PMCID: PMC3025331  PMID: 21095591
8.  Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins 
Background
The unfolding speed of some hyperthermophilic proteins is dramatically lower than that of their mesostable homologs. Ribonuclease HII from the hyperthermophilic archaeon Thermococcus kodakaraensis (Tk-RNase HII) is stabilized by its remarkably slow unfolding rate, whereas RNase HI from the thermophilic bacterium Thermus thermophilus (Tt-RNase HI) unfolds rapidly, comparable with to that of RNase HI from Escherichia coli (Ec-RNase HI).
Results
To clarify whether the difference in the unfolding rate is due to differences in the types of RNase H or differences in proteins from archaea and bacteria, we examined the equilibrium stability and unfolding reaction of RNases HII from the hyperthermophilic bacteria Thermotoga maritima (Tm-RNase HII) and Aquifex aeolicus (Aa-RNase HII) and RNase HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI). These proteins from hyperthermophiles are more stable than Ec-RNase HI over all the temperature ranges examined. The observed unfolding speeds of all hyperstable proteins at the different denaturant concentrations studied are much lower than those of Ec-RNase HI, which is in accordance with the familiar slow unfolding of hyperstable proteins. However, the unfolding rate constants of these RNases H in water are dispersed, and the unfolding rate constant of thermophilic archaeal proteins is lower than that of thermophilic bacterial proteins.
Conclusions
These results suggest that the nature of slow unfolding of thermophilic proteins is determined by the evolutionary history of the organisms involved. The unfolding rate constants in water are related to the amount of buried hydrophobic residues in the tertiary structure.
doi:10.1186/1471-2148-10-207
PMCID: PMC2927913  PMID: 20615256
9.  Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex 
Nucleic Acids Research  2008;37(1):96-110.
Eukaryotic RNase H2 is a heterotrimeric enzyme. Here, we show that the biochemical composition and stoichiometry of the human RNase H2 complex is consistent with the properties previously deduced from genetic studies. The catalytic subunit of eukaryotic RNase H2, RNASEH2A, is well conserved and similar to the monomeric prokaryotic RNase HII. In contrast, the RNASEH2B and RNASEH2C subunits from human and Saccharomyces cerevisiae share very little homology, although they both form soluble B/C complexes that may serve as a nucleation site for the addition of RNASEH2A to form an active RNase H2, or for interactions with other proteins to support different functions. The RNASEH2B subunit has a PIP-box and confers PCNA binding to human RNase H2. Unlike Escherichia coli RNase HII, eukaryotic RNase H2 acts processively and hydrolyzes a variety of RNA/DNA hybrids with similar efficiencies, suggesting multiple cellular substrates. Moreover, of five analyzed mutations in human RNASEH2B and RNASEH2C linked to Aicardi-Goutières Syndrome (AGS), only one, R69W in the RNASEH2C protein, exhibits a significant reduction in specific activity, revealing a role for the C subunit in enzymatic activity. Near-normal activity of four AGS-related mutant enzymes was unexpected in light of their predicted impairment causing the AGS phenotype.
doi:10.1093/nar/gkn913
PMCID: PMC2615623  PMID: 19015152
10.  Crystallization and preliminary X-ray diffraction study of an active-site mutant of pro-Tk-subtilisin from a hyperthermophilic archaeon 
Crystallization of and preliminary crystallographic studies on an active-site mutant of pro-Tk-subtilisin from the hyperthermophilic archaeon T. kodakaraensis were performed.
Crystallization of and preliminary crystallographic studies on an active-site mutant of pro-Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis were performed. The crystal was grown at 277 K by the sitting-drop vapour-diffusion method. Native X-ray diffraction data were collected to 2.3 Å resolution using synchrotron radiation from station BL41XU at SPring-8. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 92.69, b = 121.78, c = 77.53 Å. Assuming the presence of one molecule per asymmetric unit, the Matthews coefficient V M was calculated to be 2.6 Å3 Da−1 and the solvent content was 53.1%.
doi:10.1107/S1744309106030454
PMCID: PMC2242867  PMID: 16946475
pro-Tk-subtilisin; Thermococcus kodakaraensis
11.  Crystallization and preliminary crystallographic analysis of type 1 RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7 
Type 1 RNase H from the hyperthermophilic archaeon S. tokodaii 7 was overproduced in E. coli, purified, and crystallized. Preliminary crystallographic studies indicated that the crystal belongs to space group P43, with unit-cell parameters a = b = 39.21, c = 91.15 Å.
Crystallization and preliminary crystallographic studies of type 1 RNase H from the hyperthermophilic archaeon Sulfolobus tokodaii 7 were performed. A crystal was grown at 277 K by the sitting-drop vapour-diffusion method. Native X-ray diffraction data were collected to 1.5 Å resolution using synchrotron radiation from station BL41XU at SPring-8. The crystal belongs to space group P43, with unit-cell parameters a = b = 39.21, c = 91.15 Å. Assuming the presence of one molecule in the asymmetric unit, the Matthews coefficient V M was calculated to be 2.1 Å3 Da−1 and the solvent content was 40.5%. The structure of a selenomethionine Sto-RNase HI mutant obtained using a MAD data set is currently being analysed.
doi:10.1107/S1744309106024420
PMCID: PMC2242919  PMID: 16880556
type 1 RNase H; Sulfolobus tokodaii 7
12.  Overproduction and preliminary crystallographic study of a human kynurenine aminotransferase II homologue from Pyrococcus horikoshii OT3 
A human kynurenine aminotransferase II homologue from P. horikoshii OT3 has been overproduced in E. coli, purified, and characterized. Crystals of this protein have been obtained and analyzed by X-ray diffraction.
The Pyrococcus horikoshii OT3 genome contains a gene encoding a human kynurenine aminotransferase II (KAT II) homologue, which consists of 428 amino-acid residues and shows an amino-acid sequence identity of 30% to human KAT II. This gene was overexpressed in Escherichia coli and the recombinant protein (Ph-KAT II) was purified. Gel-filtration chromatography showed that Ph-KAT II exists as a homodimer. Ph-KAT II exhibited enzymatic activity that catalyzes the transamination of l-kynurenine to produce kynurenic acid. Crystals of Ph-KAT II were grown using the sitting-drop vapour-diffusion method and native X-ray diffraction data were collected to 2.2 Å resolution using synchrotron radiation from station BL44XU at SPring-8. The crystals belong to the centred orthorhombic space group C2221, with unit-cell parameters a = 71.75, b = 86.84, c = 137.30 Å. Assuming one molecule per asymmetric unit, the V M value was 2.19 Å3 Da−1 and the solvent content was 43.3%.
doi:10.1107/S1744309105005269
PMCID: PMC1952292  PMID: 16511030
kynurenine aminotransferase II; Pyrococcus horikoshii OT3
13.  Crystallization and preliminary X-ray diffraction study of thermostable RNase HIII from Bacillus stearothermophilus  
A thermostable ribonuclease HIII from B. stearothermophilus (Bst RNase HIII) was crystallized and preliminary crystallographic studies were performed. Plate-like overlapping polycrystals were grown by the sitting-drop vapour-diffusion method at 283 K.
A thermostable ribonuclease HIII from Bacillus stearothermophilus (Bst RNase HIII) was crystallized and preliminary crystallographic studies were performed. Plate-like overlapping polycrystals were grown by the sitting-drop vapour-diffusion method at 283 K. Native X-ray diffraction data were collected to 2.8 Å resolution using synchrotron radiation from station BL44XU at SPring-8. The crystals belong to the orthorhombic space group P21212, with unit-cell parameters a = 66.73, b = 108.62, c = 48.29 Å. Assuming one molecule per asymmetric unit, the V M value was 2.59 Å3 Da−1 and the solvent content was 52.2%.
doi:10.1107/S1744309105003659
PMCID: PMC1952286  PMID: 16511022
ribonuclease HIII

Results 1-13 (13)