Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Dietary mineral supplies in Africa 
Physiologia Plantarum  2014;151(3):208-229.
Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting harvestplus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks.
PMCID: PMC4235459  PMID: 24524331
2.  Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi 
Scientific Reports  2013;3:1425.
Selenium (Se) is an essential human micronutrient with critical roles in immune functioning and antioxidant defence. Estimates of dietary Se intakes and status are scarce for Africa although crop surveys indicate deficiency is probably widespread in Malawi. Here we show that Se deficiency is likely endemic in Malawi based on the Se status of adults consuming food from contrasting soil types. These data are consistent with food balance sheets and composition tables revealing that >80% of the Malawi population is at risk of dietary Se inadequacy. Risk of dietary Se inadequacy is >60% in seven other countries in Southern Africa, and 22% across Africa as a whole. Given that most Malawi soils cannot supply sufficient Se to crops for adequate human nutrition, the cost and benefits of interventions to alleviate Se deficiency should be determined; for example, Se-enriched nitrogen fertilisers could be adopted as in Finland.
PMCID: PMC3594796  PMID: 23478344
3.  Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings 
PLoS ONE  2011;6(11):e28184.
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX.
The optimized in-house assay is broadly sensitive in genotyping HIV-1 group M viral strains and more sensitive than the original in-house, TRUGENE® and ViroSeq® in detecting mixed viral populations. The broad sensitivity and substantial reagent cost saving make this assay more accessible for RLS where HIVDR surveillance is recommended to minimize the development and transmission of HIVDR.
PMCID: PMC3223235  PMID: 22132237
4.  Development and Application of a Broadly Sensitive Dried-Blood-Spot-Based Genotyping Assay for Global Surveillance of HIV-1 Drug Resistance ▿  
Journal of Clinical Microbiology  2010;48(9):3158-3164.
As antiretroviral therapy (ART) is scaled up in resource-limited countries, surveillance for HIV drug resistance (DR) is vital to ensure sustained effectiveness of first-line ART. We have developed and applied a broadly sensitive dried-blood-spot (DBS)-based genotyping assay for surveillance of HIV-1 DR in international settings. In 2005 and 2006, 171 DBS samples were collected under field conditions from newly diagnosed HIV-1-infected individuals from Malawi (n = 58), Tanzania (n = 60), and China (n =53). In addition, 30 DBS and 40 plasma specimens collected from ART patients in China and Cameroon, respectively, were also tested. Of the 171 DBS analyzed at the protease and RT regions, 149 (87.1%) could be genotyped, including 49 (81.7%) from Tanzania, 47 (88.7%) from China, and 53 (91.4%) from Malawi. Among the 70 ART patient samples analyzed, 100% (30/30) of the Chinese DBS and 90% (36/40) of the Cameroonian plasma specimens were genotyped, including 8 samples with a viral load of <400 copies/ml. The results of phylogenetic analyses indicated that the subtype, circulating recombinant form (CRF), and unique recombinant form (URF) distribution was as follows: 73 strains were subtype C (34%), 37 were subtype B (17.2%), 24 each were CRF01_AE or CRF02_AG (11.2% each), 22 were subtype A1 (10.2%), and 9 were unclassifiable (UC) (4.2%). The remaining samples were minor strains comprised of 6 that were CRF07_BC (2.8%), 5 that were CRF10_CD (2.3%), 3 each that were URF_A1C and CRF08_BC (1.4%), 2 each that were G, URF_BC, and URF_D/UC (0.9%), and 1 each that were subtype F1, subtype F2, and URF_A1D (0.5%). Our results indicate that this broadly sensitive genotyping assay can be used to genotype DBS collected from areas with diverse HIV-1 group M subtypes and CRFs. Thus, the assay is likely to become a useful screening tool in the global resistance surveillance and monitoring of HIV-1 where multiple subtypes and CRFs are found.
PMCID: PMC2937690  PMID: 20660209
5.  Distribution of Environmental Mycobacteria in Karonga District, Northern Malawi 
The genus Mycobacterium includes many species that are commonly found in the environment (in soil and water or associated with plants and animals), as well as species that are responsible for two major human diseases, tuberculosis (Mycobacterium tuberculosis) and leprosy (Mycobacterium leprae). The distribution of environmental mycobacteria was investigated in the context of a long-term study of leprosy, tuberculosis, Mycobacterium bovis BCG vaccination, and the responses of individuals to various mycobacterial antigens in Karonga District, northern Malawi, where epidemiological studies had indicated previously that people may be exposed to different mycobacterial species in the northern and southern parts of the district. A total of 148 soil samples and 24 water samples were collected from various locations and examined to determine the presence of mycobacteria. The detection method involved semiselective culturing and acid-fast staining, following decontamination of samples to enrich mycobacteria and reduce the numbers of other microorganisms, or PCR with primers specific for the mycobacterial 16S rRNA gene, using DNA extracted directly from soil and water samples. Mycobacteria were detected in the majority of the samples, and subsequent sequence analysis of PCR products amplified directly from soil DNA indicated that most of the products were related to known environmental mycobacteria. For both methods the rates of recovery were consistently higher for dry season samples than for wet season samples. All isolates cultured from soil appeared to be strains of Mycobacterium fortuitum. This study revealed a complex pattern for the environmental mycobacterial flora but identified no clear differences between the northern and southern parts of Karonga District.
PMCID: PMC1449038  PMID: 16597928

Results 1-5 (5)