Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  CD209a Expression on Dendritic Cells is Critical for the Development of Pathogenic Th17 Cell Responses in Murine Schistosomiasis1 
In murine schistosomiasis, immunopathology and cytokine production in response to parasite eggs is uneven and strain dependent. CBA mice develop severe hepatic granulomatous inflammation associated with prominent T helper 17 (Th17) cell responses driven by dendritic cell (DC)-derived IL-1β and IL-23. Such Th17 cells fail to develop in low-pathology BL/6 mice, and the reasons for these strain-specific differences in antigen (Ag) presenting cell (APC) reactivity to eggs remain unclear. We show by gene profiling that CBA DCs display an 18-fold higher expression of the C-type lectin receptor (CLR) CD209a, a murine homologue of human DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), than BL/6 DCs. Higher CD209a expression was observed in CBA splenic and granuloma APC subpopulations, but only DCs induced Th17 cell differentiation in response to schistosome eggs. Gene silencing in CBA DCs, and over-expression in BL/6 DCs, demonstrated that CD209a is essential for egg-elicited IL-1β and IL-23 production and subsequent Th17 cell development, which is associated with SRC, RAF-1, and ERK1/2 activation. These findings reveal a novel mechanism controlling the development of Th17 cell-mediated severe immunopathology in helminthic disease.
PMCID: PMC4030302  PMID: 24729611
2.  Classical Flt3L-dependent dendritic cells control immunity to protein vaccine 
The Journal of Experimental Medicine  2014;211(9):1875-1891.
Protective immunity to protein vaccines is controlled by Flt3L-dependent classical LN-resident dendritic cells, and dampened by migratory dendritic cells.
DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.
PMCID: PMC4144735  PMID: 25135299
3.  Flt3L-dependence helps define an uncharacterized subset of murine cutaneous dendritic cells 
Skin-derived dendritic cells (DC) are potent antigen presenting cells with critical roles in both adaptive immunity and tolerance to self. Skin DC carry antigens and constitutively migrate to the skin draining lymph nodes (LN). In mice, Langerin-CD11b− dermal DC are a low-frequency, heterogeneous, migratory DC subset that traffic to LN (Langerin-CD11b-migDC). Here, we build on the observation that Langerin-CD11b− migDC are Fms-like tyrosine kinase 3 ligand (Flt3L) dependent and strongly Flt3L responsive, which may relate them to classical DCs. Examination of DC capture of FITC from painted skin, DC isolation from skin explant culture, and from the skin of CCR7 knockout mice which accumulate migDC, demonstrate these cells are cutaneous residents. Langerin-CD11b-Flt3L responsive DC are largely CD24(+) and CX3CR1low and can be depleted from Zbtb46-DTR mice, suggesting classical DC lineage. Langerin-CD11bmigDC present antigen with equal efficiency to other DC subsets ex vivo including classical CD8α cDC and Langerin+CD103+ dermal DC. Finally, transcriptome analysis suggests a close relationship to other skin DC, and a lineage relationship to other classical DC. This work demonstrates that Langerin- CD11b− dermal DC, a previously overlooked cell subset, may be an important player in the cutaneous immune environment.
PMCID: PMC3994898  PMID: 24288007
4.  Control of Dendritic Cell Migration, T Cell-Dependent Immunity, and Autoimmunity by Protein Tyrosine Phosphatase PTPN12 Expressed in Dendritic Cells 
Molecular and Cellular Biology  2014;34(5):888-899.
Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responses in vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2.
PMCID: PMC4023833  PMID: 24366546
5.  Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract 
The Journal of Experimental Medicine  2013;210(9):1871-1888.
Lung DCs induce the expression of gut-homing molecules on T cells, resulting in their migration to the GI tract and protection against Salmonella infection after immunization
Developing efficacious vaccines against enteric diseases is a global challenge that requires a better understanding of cellular recruitment dynamics at the mucosal surfaces. The current paradigm of T cell homing to the gastrointestinal (GI) tract involves the induction of α4β7 and CCR9 by Peyer’s patch and mesenteric lymph node (MLN) dendritic cells (DCs) in a retinoic acid–dependent manner. This paradigm, however, cannot be reconciled with reports of GI T cell responses after intranasal (i.n.) delivery of antigens that do not directly target the GI lymphoid tissue. To explore alternative pathways of cellular migration, we have investigated the ability of DCs from mucosal and nonmucosal tissues to recruit lymphocytes to the GI tract. Unexpectedly, we found that lung DCs, like CD103+ MLN DCs, up-regulate the gut-homing integrin α4β7 in vitro and in vivo, and induce T cell migration to the GI tract in vivo. Consistent with a role for this pathway in generating mucosal immune responses, lung DC targeting by i.n. immunization induced protective immunity against enteric challenge with a highly pathogenic strain of Salmonella. The present report demonstrates novel functional evidence of mucosal cross talk mediated by DCs, which has the potential to inform the design of novel vaccines against mucosal pathogens.
PMCID: PMC3754860  PMID: 23960190
6.  Dendritic Cells and Regulatory T Cells in Atherosclerosis 
Molecules and Cells  2012;34(4):341-347.
Although macrophages and other immune system cells, especially T cells, have been shown to play disease-promoting roles in atherosclerosis, less is known about the role of antigen presenting cells. Functional, immune stimulating dendritic cells (DCs) have recently been detected in aortic intima, the site of origin of atherosclerosis. We had compared DCs with macrophages in mice with experimental atherosclerosis, to clearly define cell types by developmental and functional criteria. This review summarizes recent advances in studies of DCs in humans and in mouse models of atherosclerosis, as well as providing a simple strategy to measure regulatory T (Treg) cells in the mouse aorta.
PMCID: PMC3887765  PMID: 22752759
atherosclerosis; dendritic cell; regulatory T cell
7.  A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T cell immunity in vivo 
European journal of immunology  2011;42(1):101-109.
Protein-based vaccines offer safety and cost advantages but require adjuvants to induce immunity. Glucopyranosyl Lipid A (GLA) is a new synthetic non-toxic analogue of lipopolysaccharide. In mice, in comparison to non-formulated LPS and another analog Monophosphoryl Lipid A, formulated GLA induced higher antibody titers and generated Type 1 T cell responses to HIV gag-p24 protein in spleen and lymph nodes, which was dependent on TLR4 expression. Immunization was greatly improved by targeting HIV gag p24 to dendritic cells (DCs) within anti-DEC antibody, a DC receptor for antigen uptake and processing. Subcutaneous immunization induced antigen-specific T cell responses in the intestinal lamina propria. Immunity did not develop in mice transiently depleted of DCs. To understand how GLA works, we studied DCs directly from the vaccinated mice. Within 4 hrs, GLA caused DCs in vivo to upregulate CD86 and CD40 and produce cytokines including IL-12p70. Importantly, DCs removed from mice 4 hrs after vaccination became immunogenic, capable of inducing T cell immunity upon injection into naïve mice. These data indicate that a synthetic and clinically feasible TLR4 agonist rapidly stimulates full maturation of DCs in vivo and this allows for adaptive immunity to develop many weeks to months later.
PMCID: PMC3517108  PMID: 22002164
Adjuvants; Vaccination; Dendritic cells; mucosal immunity; Innate Immunity
8.  Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage 
The Journal of Experimental Medicine  2012;209(6):1153-1165.
The zinc finger transcription factor zDC is uniquely expressed by the cDC lineage among immune cells, and the insertion of diphtheria toxin receptor cDNA into the zDC locus allows specific ablation of the cDC lineage in mice.
Classical dendritic cells (cDCs), monocytes, and plasmacytoid DCs (pDCs) arise from a common bone marrow precursor (macrophage and DC progenitors [MDPs]) and express many of the same surface markers, including CD11c. We describe a previously uncharacterized zinc finger transcription factor, zDC (Zbtb46, Btbd4), which is specifically expressed by cDCs and committed cDC precursors but not by monocytes, pDCs, or other immune cell populations. We inserted diphtheria toxin (DT) receptor (DTR) cDNA into the 3′ UTR of the zDC locus to serve as an indicator of zDC expression and as a means to specifically deplete cDCs. Mice bearing this knockin express DTR in cDCs but not other immune cell populations, and DT injection into zDC-DTR bone marrow chimeras results in cDC depletion. In contrast to previously characterized CD11c-DTR mice, non-cDCs, including pDCs, monocytes, macrophages, and NK cells, were spared after DT injection in zDC-DTR mice. We compared immune responses to Toxoplasma gondii and MO4 melanoma in DT-treated zDC- and CD11c-DTR mice and found that immunity was only partially impaired in zDC-DTR mice. Our results indicate that CD11c-expressing non-cDCs make significant contributions to initiating immunity to parasites and tumors.
PMCID: PMC3371731  PMID: 22615130
9.  Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas 
Cell  2010;143(3):416-429.
Dendritic cells (DCs), critical antigen presenting cells for immune control, normally derive from bone marrow precursors distinct from monocytes. It is not yet established if the large reservoir of monocytes can develop into cells with critical features of DCs in vivo. We now show that fully differentiated Mo-DCs develop in mice and DC-SIGN/CD209a marks the cells. Mo-DCs are recruited from blood monocytes into lymph nodes by lipopolysaccharide and live or dead gram negative bacteria. Mobilization requires TLR4 and its CD14 coreceptor and Trif. When tested for antigen presenting function, Mo-DCs are as active as classical DCs, including cross presentation of proteins and live gram negative bacteria on MHC I in vivo. Fully differentiated Mo-DCs acquire DC morphology and localize to T cell areas via L-selectin and CCR7. Thus the blood monocyte reservoir becomes the dominant presenting cell in response to select microbes, yielding DC-SIGN+ cells with critical functions of DCs.
PMCID: PMC3150728  PMID: 21029863
10.  New monoclonal anti-mouse DC-SIGN antibodies reactive with acetone-fixed cells 
Journal of immunological methods  2010;360(1-2):66-75.
Mouse DC-SIGN CD209a is a type II transmembrane protein, one of a family of C-type lectin genes syntenic and homologous to human DC-SIGN. Current anti-mouse DC-SIGN monoclonal antibodies (MAbs) are unable to react with DC-SIGN in acetone fixed cells, limiting the chance to visualize DC-SIGN in tissue sections. We first produced rabbit polyclonal PAb-DSCYT14 against a 14-aa peptide in the cytosolic domain of mouse DC-SIGN, and it specifically detected DC-SIGN and not the related lectins, SIGN-R1 and SIGN-R3 expressed in transfected CHO cells. MAbs were generated by immunizing rats and DC-SIGN knockout mice with the extracellular region of mouse DC-SIGN.. Five rat IgG2a or IgM MAbs, named BMD10, 11, 24, 25, and 30, were selected and each MAb specifically detected DC-SIGN by FACS and Western blots, although BMD25 was cross-reactive to SIGN-R1. Two mouse IgG2c MAbs MMD2 and MMD3 interestingly bound mouse DC-SIGN but at 10 fold higher levels than the rat MAbs. When the binding epitopes of the new BMD and two other commercial rat anti-DC-SIGN MAbs, 5H10 and LWC06, were examined by competition assays, the epitopes of BMD11, 24, and LWC06 were identical or closely overlapping while BMD10, 30, and 5H10 were shown to bind different epitopes. MMD2 and MMD3 epitopes were on a 3rd noncompeting region of mouse DC-SIGN. DC-SIGN expressed on the cell surface was sensitive to collagenase treatment, as monitored by polyclonal and MAb. These new reagents should be helpful to probe the biology of DC-SIGN in vivo.
PMCID: PMC2924951  PMID: 20558171
Monoclonal Antibody; Polyclonal Antibody; DC-SIGN; CD209a; Dendritic Cells
11.  Early complement factors in the local tissue immunocomplex generated during intestinal ischemia/reperfusion injury 
Molecular immunology  2009;47(5):972.
Recent work reveals that the innate immune system is able to recognize self targets and initiate an inflammatory response similar to that of pathogens. One novel example of this innate autoimmunity is ischemia/reperfusion (I/R) injury, in which reperfusion of the ischemic tissues elicits an acute inflammatory response activated by natural IgM (nIgM) binding to ischemia-specific self antigens, which are non-muscle myosin heavy chains type II (NMHC-II) subtype A and C. Subsequently, the complement lectin pathway is activated and eventually tissue injury occurs. Although earlier studies in the intestinal model showed that the classical complement pathway did not initiate I/R injury, C1q deposition was still observed in the local injured tissues by imaging analysis. Moreover, the involvement of the alternative complement pathway became unclear due to conflicting reports using different knockout mice. To explore the immediate downstream pathway following nIgM-ischemic antigen interaction, we isolated the nIgM-ischemic antigen immunocomplexes from the local tissue of animals treated in the intestinal I/R injury model, and examined the presence of initial molecules of three complement pathways. Our results showed that mannan-binding lectin (MBL), the early molecule of the lectin pathway, was present in the nIgM-ischemic Ag immunocomplex. In addition, C1q, the initial molecule of the classical pathway was also detected on the immunocomplex. However, Factor B, the early molecule in the alternative pathway, was not detected in the immunocomplex. To further examine the role of the alternative pathway in I/R injury, we utilized Factor B knockout mice in the intestinal model. Our results showed that Factor B knockout mice were not protected from local tissue injury, and their complement system was activated in the local tissues by nIgM during I/R. These results indicated that the lectin complement pathway operates immediately downstream of the nIgM-ischemic antigen interaction during intestinal I/R. Furthermore, the classical complement pathway also appears to interact with the of nIgM-ischemic antigen immunocomplex. Finally, the alternative complement pathway is not involved in I/R injury induction in the current intestinal model.
PMCID: PMC2815171  PMID: 20004473
12.  Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection 
Journal of immunological methods  2007;331(1-2):27-38.
Previously, we prepared monoclonal antibodies (mAbs) by immunizing rats with the recombinant fusion proteins of mouse Langerin/CD207, which contained a flexible linker sequence from E. coli OmpF and a FLAG epitope. We found many of new rat mAbs were not reactive to mouse Langerin, and here we identify the epitopes of two of these IgG mAbs, L2 and L5, and assess their efficacy in various immunodetection methods. MAb L5 is a rat IgG mAb against the FLAG epitope, which detected both N-terminal and C-terminal FLAG tagged protein 2 to 8 times better than the conventional anti-FLAG mAb M2 by Western blot. For mAb L2, we found its epitope to be a 14 amino acid sequence SGFANELGPRLMGK which consisted of both sequences from the OmpF derived linker and mouse Langerin. This epitope sequence was named OLLAS (E. coli OmpF Linker and mouse Langerin fusion Sequence), and mAb L2 as mAb OLLA-2. When the OLLAS sequence was inserted into recombinant proteins at N-terminal, C-terminal, or internal sites, the OLLAS tag was detected by mAb OLLA-2 with very high sensitivity compared to other conventional epitope tags and anti-tag mAbs. MAb OLLA-2 recognized OLLAS tagged proteins with at least 100-fold more sensitivity than anti-FLAG M2 and anti-V5 mAbs in Western blot analyses. We also find the OLLAS epitope to be superior in immunoprecipitation and other immunodetection methods, such as fluorescent immunohistochemistry and flow cytometry. In the process, we successfully utilized the OLLAS epitope sequence as an internal linker for fusion between the engineered mAb and the antigen, and thus achieved improved immunodetection.
PMCID: PMC2864634  PMID: 18054954
Monoclonal Antibody; Protein Tagging; FLAG Tag; OLLAS Tag
13.  Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves 
Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter–enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP+ cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histocompatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c+ cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly selected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8+ TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves.
PMCID: PMC2699134  PMID: 19221394
14.  Production of monoclonal antibodies that recognize the extracellular domain of mouse Langerin/CD207 
Journal of immunological methods  2007;324(1-2):48-62.
Langerin CD207 is a type II transmembrane protein. It is responsible for the formation of Birbeck granules, which are intracellular organelles within Langerhans cells, the dendritic cells of stratified squamous epithelia like the epidermis. Because current anti-CD207 antibodies have limitations, we prepared new monoclonals by immunizing rats with the extracellular region of mouse Langerin followed by a boost with enriched Langerhans cells (LCs). We secured a large panel of mAbs, most of which reacted with the carboxy terminal carbohydrate recognition domain. These mAbs could be used to immunoblot and immunoprecipitate mouse Langerin and to stain the cell surface and intracellular pools of CD207 by FACS analysis. Labeling of Birbeck granules was also achieved by immunoelectron microscopy. Anti-CD207 identified LCs in the epidermis and skin draining lymph nodes of BALB/c and C57BL/6 mice, but BALB/c mice had an additional Langerin+ population in spleen, thymus and mesenteric lymph node. This additional subset had higher levels of CD8 and CD205 than epidermal LCs, and also had a less mature phenotype, i.e., lower MHC II, CD40 and CD86. Subcutaneous injection of IgG but not IgM forms of these new anti-CD207 mAbs led to rapid and selective labeling of the Langerin+ cells in skin draining lymph nodes as well as spleen. The new IgG anti-CD207 mAbs should be useful for further research on LCs and dendritic cells including an evaluation of the consequences of antigen delivery within anti-CD207 mAbs in vivo.
PMCID: PMC2700064  PMID: 17553520
Monoclonal Antibody; Langerhans Cells; Langerin; CD207; Dendritic Cells
15.  Multiple Developmental Defects Derived from Impaired Recruitment of ASC-2 to Nuclear Receptors in Mice: Implication for Posterior Lenticonus with Cataract 
Molecular and Cellular Biology  2002;22(24):8409-8414.
ASC-2, a recently isolated transcriptional coactivator molecule, stimulates transactivation by multiple transcription factors, including nuclear receptors. We generated a potent dominant negative fragment of ASC-2, encompassing the N-terminal LXXLL motif that binds a broad range of nuclear receptors. This fragment, termed DN1, specifically inhibited endogenous ASC-2 from binding these receptors in vivo, whereas DN1/m, in which the LXXLL motif was mutated to LXXAA to abolish the receptor interactions, was inert. Interestingly, DN1 transgenic mice but not DN1/m transgenic mice exhibited severe microphthalmia and posterior lenticonus with cataract as well as a variety of pathophysiological phenotypes in many other organs. Our results provide a novel insight into the molecular and histopathological mechanism of posterior lenticonus with cataract and attest to the importance of ASC-2 as a pivotal transcriptional coactivator of nuclear receptors in vivo.
PMCID: PMC139866  PMID: 12446761

Results 1-15 (15)