Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
author:("Chen, zhikong")
1.  Chronic Deep Cerebellar Stimulation Promotes Long-Term Potentiation, Microstructural Plasticity, and Reorganization of Perilesional Cortical Representation in a Rodent Model 
The Journal of Neuroscience  2014;34(27):9040-9050.
Control over postinjury CNS plasticity is a major frontier of science that, if conquered, would open new avenues for treatment of neurological disorders. Here we investigate the functional, physiological, and structural changes in the cerebral cortex associated with chronic deep brain stimulation of the cerebellar output, a treatment approach that has been shown to improve postischemia motor recovery in a rodent model of cortical infarcts. Long–Evans rats were pretrained on the pasta-matrix retrieval task, followed by induction of focal cortical ischemia and implantation of a macroelectrode in the contralesional lateral cerebellar nucleus. Animals were assigned to one of three treatment groups pseudorandomly to balance severity of poststroke motor deficits: REGULAR stimulation, BURST stimulation, or SHAM. Treatment initiated 2 weeks post surgery and continued for 5 weeks. At the end, animals were randomly selected for perilesional intracortical microstimulation mapping and tissue sampling for Western blot analysis or contributed tissue for 3D electron microscopy.
Evidence of enhanced cortical plasticity with therapeutically effective stimulation is shown, marked by greater perilesional reorganization in stimulation- treated animals versus SHAM. BURST stimulation was significantly effective for promoting distal forepaw cortical representation. Stimulation-treated animals showed a twofold increase in synaptic density compared with SHAM. In addition, treated animals demonstrated increased expression of synaptic markers of long-term potentiation and plasticity, including synaptophysin, NMDAR1, CaMKII, and PSD95. These findings provide a critical foundation of how deep cerebellar stimulation may guide plastic reparative reorganization after nonprogressive brain injury and indicate strong translational potential.
PMCID: PMC4078081  PMID: 24990924
cerebello-thalamo-cortical; deep brain stimulation; focal lesion; plasticity; reorganization
2.  Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ 
Objectives: This study is to determine if green tea (Camellia sinensis) extracts (GTE) affects adipogenesis and further investigate the related molecular mechanisms. Methods: Patients with metabolic syndrome were recruited in this study. Of them, 70 patients received GTE and 64 received water to serve as the control group. The human serum adiponectin, visfatin, and leptin concentrations were determined by enzyme-linked immunosorbent assay. Adipogenesis of 3T3-L1 preadipocytes was induced with reagents and then the cells were treated with GTE. The lipids were stained with Oil Red O for analysis of adipogenesis of 3T3-L1 preadipocytes. The 3T3-L1 preadipocytes were treated with increasing concentrations (0.2-0.5%, w/v) of GTE for 2 days and the cell viability was determined by MTT assay. Reverse transcription real-time PCR and immunoblotting assays were performed to determine RNA and protein levels of relative molecules. Results: GTE increases the serum concentrations of adiponectin but decreases visfatin levels in patients received GTE. The leptin concentrations in serum were not significantly affected. The GTE reduces the adipogenesis-induced lipid accumulation in 3T3-L1 preadipocytes. GTE decreases the mRNA and protein expression of adipogenic transcription factors C/EBPα and PPARγ in 3T3-L1 cells. Expression levels of the adipocyte-specific genes encoding adipocyte protein 2, lipoprotein lipase, and glucose transporter 4 were also decreased by GTE. Furthermore, it was found that GTE reduces phosphorylation of Akt during adipocyte differentiation. Conclusions: GTE reduces adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ by reduction of phosphorylation of Akt during adipocyte differentiation.
PMCID: PMC4307434  PMID: 25663987
Green tea extracts; adipogenesis; transcription factor; C/EBPα; PPARγ
3.  IL-4 confers resistance to IL-27-mediated suppression on CD4+ T cells by impairing STAT1 signaling 
Th2 cells play a critical role in the pathogenesis of allergic asthma. Established Th2 cells have been shown to resist reprogramming into Th1 cells. The inherent stability of Th2 cells poses a significant barrier to treating allergic diseases.
We sought to understand the mechanisms by which CD4+ T cells from asthmatic patients resist the IL-27-mediated inhibition.
We isolated and cultured CD4+ T cells from both healthy individuals and allergic asthmatic patients in order to test whether IL-27 can inhibit IL-4 production by the cultured CD4+ T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined using both murine and human CD4+ T cell culture systems. STAT1 phosphorylation was analyzed by Western blot and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA.
Main Results
We demonstrated that CD4+ T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to Th2-inducing conditions rendered healthy human CD4+ T cells resistant to IL-27-mediated inhibition. Using an in vitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The Knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4-production.
Our findings demonstrate that differentiated Th2 cells can resist IL-27-induced reprogramming toward Th1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4+ T cells of asthmatic patients are resistant to IL-27-mediated inhibition.
PMCID: PMC3788709  PMID: 23958647
asthma; Th2 stability; IL-4; STAT1 signaling; SOCS3; IL-27
ACS chemical biology  2014;9(4):1003-1014.
NRAS is the second most frequently mutated gene in melanoma. Previous reports have demonstrated the sensitivity of cancer cell lines carrying KRAS mutations to apoptosis initiated by inhibition of protein kinase C delta (PKCδ). Here, we report that PKCδ inhibition is cytotoxic in melanomas with primary NRAS mutations. Novel small-molecule inhibitors of PKCδ were designed as chimeric hybrids of two naturally-occurring PKCδ inhibitors, staurosporine and rottlerin. The specific hypothesis interrogated and validated is that combining two domains of two naturally-occurring PKCδ inhibitors into a chimeric or hybrid structure retains biochemical and biological activity, and improves PKCδ isozyme selectivity. We have devised a potentially general synthetic protocol to make these chimeric species using Molander trifluorborate coupling chemistry. Inhibition of PKCδ, by siRNA or small molecule inhibitors, suppressed the growth of multiple melanoma cell lines carrying NRAS mutations, mediated via caspase-dependent apoptosis. Following PKCδ inhibition, the stress-responsive JNK pathway was activated, leading to the activation of H2AX. Consistent with recent reports on the apoptotic role of phospho-H2AX, knockdown of H2AX prior to PKCδ inhibition mitigated the induction of caspase-dependent apoptosis. Furthermore, PKCδ inhibition effectively induced cytotoxicity in BRAF-mutant melanoma cell lines that had evolved resistance to a BRAF inhibitor, suggesting the potential clinical application of targeting PKCδ in patients who have relapsed following treatment with BRAF inhibitors. Taken together, the present work demonstrates that inhibition of PKCδ by novel small molecule inhibitors causes caspase-dependent apoptosis mediated via the JNK-H2AX pathway in melanomas with NRAS mutations or BRAF inhibitor-resistance.
PMCID: PMC4160068  PMID: 24506253
5.  Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen 
Scientific Reports  2014;4:5564.
Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.
PMCID: PMC4083294  PMID: 24998261
6.  Gene Expression Profiling Reveals Large Regulatory Switches between Succeeding Stipe Stages in Volvariella volvacea 
PLoS ONE  2014;9(5):e97789.
The edible mushroom Volvariella volvacea is an important crop in Southeast Asia and is predominantly harvested in the egg stage. One of the main factors that negatively affect its yield and value is the rapid transition from the egg to the elongation stage, which has a decreased commodity value and shelf life. To improve our understanding of the changes during stipe development and the transition from egg to elongation stage in particular, we analyzed gene transcription in stipe tissue of V. volvacea using 3′-tag based digital expression profiling. Stipe development turned out to be fairly complex with high numbers of expressed genes, and regulation of stage differences is mediated mainly by changes in expression levels of genes, rather than on/off modulation. Most explicit is the strong up-regulation of cell division from button to egg, and the very strong down-regulation hereof from egg to elongation, that continues in the maturation stage. Button and egg share cell division as means of growth, followed by a major developmental shift towards rapid stipe elongation based on cell extension as demonstrated by inactivation of cell division throughout elongation and maturation. Examination of regulatory genes up-regulated from egg to elongation identified three potential high upstream regulators for this switch. The new insights in stipe dynamics, together with a series of new target genes, will provide a sound base for further studies on the developmental mechanisms of mushroom stipes and the switch from egg to elongation in V. volvacea in particular.
PMCID: PMC4035324  PMID: 24867220
7.  A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles 
Nanoscale Research Letters  2014;9(1):208.
We explore a facile and nontoxic hydrothermal route for synthesis of a Cu2ZnSnS4 nanocrystalline material by using l-cysteine as the sulfur source and ethylenediaminetetraacetic acid (EDTA) as the complexing agent. The effects of the amount of EDTA, the mole ratio of the three metal ions, and the hydrothermal temperature and time on the phase composition of the obtained product have been systematically investigated. The addition of EDTA and an excessive dose of ZnCl2 in the hydrothermal reaction system favor the generation of kesterite Cu2ZnSnS4. Pure kesterite Cu2ZnSnS4 has been synthesized at 180°C for 12 h from the reaction system containing 2 mmol of EDTA at 2:2:1 of Cu/Zn/Sn. It is confirmed by Raman spectroscopy that those binary and ternary phases are absent in the kesterite Cu2ZnSnS4 product. The kesterite Cu2ZnSnS4 material synthesized by the hydrothermal process consists of flower-like particles with 250 to 400 nm in size. It is revealed that the flower-like particles are assembled from single-crystal Cu2ZnSnS4 nanoflakes with ca. 20 nm in size. The band gap of the Cu2ZnSnS4 nanocrystalline material is estimated to be 1.55 eV. The films fabricated from the hierarchical Cu2ZnSnS4 particles exhibit fast photocurrent responses under intermittent visible-light irradiation, implying that they show potentials for use in solar cells and photocatalysis.
PMCID: PMC4013540  PMID: 24855463
Cu2ZnSnS4; Nanocrystalline material; Hierarchical particles; Hydrothermal process; Photoelectrochemical property
8.  Semi-automated method for estimating lesion volumes 
Journal of neuroscience methods  2012;213(1):76-83.
Accurately measuring the volume of tissue damage in experimental lesion models is crucial to adequately control for the extent and location of the lesion, variables that can dramatically bias the outcome of preclinical studies. Many of the current commonly used techniques for this assessment, such as measuring the lesion volume with primitive software macros and plotting the lesion location manually using atlases, are time-consuming and offer limited precision. Here we present an easy to use semi-automated computational method for determining lesion volume and location, designed to increase precision and reduce the manual labor required. We compared this novel method to currently used methods and demonstrate that this tool is comparable or superior to current techniques in terms of precision and has distinct advantages with respect to user interface, labor intensiveness and quality of data presentation.
PMCID: PMC3570743  PMID: 23261655
lesion volume; stroke; traumatic brain injury; cell death; lesion estimation; computational method
9.  Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo 
BMC Cancer  2014;14:90.
A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach.
shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA.
We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human CSCs in culture. PKCδ inhibition efficiently prevents tumor sphere outgrowth from tumor cell cultures, with exposure times as short as six hours. Small-molecule PKCδ inhibitors also inhibit human CSC growth in vivo in a mouse xenograft model.
These findings suggest that the novel PKC isozyme PKCδ may represent a new molecular target for cancer stem cell populations.
PMCID: PMC3927586  PMID: 24528676
Protein Kinase C isozymes; Synthetic lethal interaction; Cancer-initiating cell; Xenograft tumor model
10.  Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis 
Neural Regeneration Research  2013;8(19):1756-1764.
Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats.
PMCID: PMC4145953  PMID: 25206472
neural regeneration; traditional Chinese medicine; sericin; type 2 diabetes mellitus; hippocampus; growth hormone; insulin-like growth factor 1; growth hormone receptor; growth hormone/insulin-like growth factor 1 axis; streptozotocin; blood glucose; western blot assay; reverse transcription-PCR; grants-supported paper; neuroregeneration
11.  Downregulation of Beclin1 and Impairment of Autophagy in a Small Population of Colorectal Cancer 
Digestive Diseases and Sciences  2013;58(10):2887-2894.
Autophagy is a highly conserved mechanism for degradation and recycling of long-lived proteins and damaged organelle to maintain cell homeostasis. Deregulation of autophagy has been associated with tumorigenesis. Beclin 1 is an essential autophagy protein and its upregulation has been observed in most colorectal cancer tissues. However, there is a small population of colorectal cancers with downregulation of Beclin 1.
The purpose of this study was to investigate the role autophagy plays in colorectal cancers with downregulaion of Beclin 1.
LC3 protein, an autophagosome marker, was assessed by ICH and WB in colorectal cancers tissues. An anti-tumor effect of Beclin 1 was examined by introducing exogenous Beclin 1 in vitro. Colony formation assay, growth curves and mouse xenograft were analysed.
Our results showed that LC3 was suppressed in the colorectal cancers (9.86 %) with downregulation of Beclin 1. Moreover, overexpression of Beclin 1 inhibited colorectal cancer cell growth and enhanced the rapamycin-induced antitumor effect in vitro.
Downregulation of Beclin 1 and autophagy inhibition play an important role in a part of colorectal cancers. Activating autophagy or overexperssion of Beclin 1 may be an effective treatment for some colorectal cancers. Detection of expression profile of Beclin 1 in colorectal cancers could be a strategy for new diagnostic and therapeutic methods.
Electronic supplementary material
The online version of this article (doi:10.1007/s10620-013-2732-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3781302  PMID: 23812859
Colorectal cancer; Beclin 1; Autophagy; Rapamycin
12.  Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells★ 
Neural Regeneration Research  2013;8(6):506-513.
Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4–6 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells.
PMCID: PMC4146054  PMID: 25206693
neural regeneration; traditional Chinese medicine; peripheral nerve injury; diabetes mellitus; sericin; sciatic nerve; spinal ganglion cells; anterior horn cells; nerve cells; neurofilament protein; nerve growth factor; neuropeptide Y; streptozotocin; photographs-containing paper; neuroregeneration
13.  Long-term effects of a combination of D-penicillamine and zinc salts in the treatment of Wilson’s disease in children 
The aim of this study was to investigate the effectiveness of a high-dose zinc sulfate and low-dose D-penicillamine combination in the treatment of pediatric Wilson’s disease (WD). A retropective chart review of 65 patients with WD was conducted. These patients received D-penicillamine (8–10 mg/kg/day) and zinc sulfate as the primary treatment. The pediatric dose of elemental zinc is 68–85 mg/day until 6 years of age, 85–136 mg/day until 8 years of age, 136–170 mg/day until 10 years of age and then 170 mg/day, in 3 divided doses 1 h before meals. After clinical and biochemical improvement or stabilization, zinc sulfate alone was administered as the maintenance therapy. Under treatment, the majority of patients (89.2%) had a favourable outcome and 3 patients succumbed due to poor therapy compliance. No penicillamine-induced neurological deterioration was noted and side-effects were observed in <11% of patients over the entire follow-up period. Benefical results on the liver and neurological symptoms were reported following extremely long-term treatment with a combination of low-dose D-penicillamine and high-dose zinc sulfate. Therefore, this regimen is an effective and safe treatment for children with WD.
PMCID: PMC3628594  PMID: 23599735
Wilson’s disease; D-penicillamine; zinc sulfate; child
14.  Protein Kinase C-delta Inactivation Inhibits Cellular Proliferation and Decreases Survival in Human Neuroendocrine Tumors 
Endocrine-related cancer  2011;18(6):759-771.
The concept of targeting cancer therapeutics towards specific mutations or abnormalities in tumor cells which are not found in normal tissues has the potential advantages of high selectivity for the tumor and correspondingly low secondary toxicities. Many human malignancies display activating mutations in the Ras family of signal-transducing genes or over-activity of p21Ras-signaling pathways. Carcinoid and other neuroendocrine tumors similarly have been demonstrated to have activation of Ras signaling directly by mutations in Ras, indirectly by loss of Ras-regulatory proteins, or via constitutive activation of upstream or downstream effector pathways of Ras, such as growth factor receptors or PI3-Kinase and Raf/MAP kinases. We previously reported that aberrant activation of Ras signaling sensitizes cells to apoptosis when the activity of the PKCδ isozyme is suppressed, and that PKCδ suppression is not toxic to cells with normal levels of p21Ras signaling. We demonstrate here that inhibition of PKCδ by a number of independent means, including genetic mechanisms (shRNA) or small molecule inhibitors, is able to efficiently and selectively repress the growth of human neuroendocrine cell lines derived from bronchopulmonary, foregut or hindgut tumors. PKCδ inhibition in these tumors also efficiently induced apoptosis. Exposure to small-molecule inhibitors of PKCδ over a period of 24 hr is sufficient to significantly suppress cell growth and clonogenic capacity of these tumor cell lines.
Neuroendocrine tumors are typically refractory to conventional therapeutic approaches. This Ras-targeted therapeutic approach, mediated through PKCδ suppression, which selectively takes advantage of the very oncogenic mutations which contribute to the malignancy of the tumor, may hold potential as a novel therapeutic modality.
PMCID: PMC3527126  PMID: 21990324
carcinoid; Ras; apoptosis; cancer
15.  Regulation of EGFR and Notch signaling by distinct isoforms of D-cbl during Drosophila development 
Developmental biology  2010;342(1):1-10.
Cells receive and interpret extracellular signals to regulate cellular responses such as proliferation, cell survival and differentiation. However, proper inactivation of these signals is critical for appropriate homeostasis. Cbl proteins are E3-ubiquitin ligases that restrict receptor tyrosine kinase (RTK) signaling, most notably EGFR (Epidermal Growth Factor Receptor), via the endocytic pathway. Consistently, many mutant phenotypes of Drosophila cbl (D-cbl) are due to inappropriate activation of EGFR signaling. However, not all D-cbl phenotypes can be explained by increased EGFR activity. Here, we report that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. The long isoform, D-CblL, regulates the EGFR. We found that the short isoform, D-CblS, preferentially restricts Notch signaling. Specifically, our data imply that D-CblS controls the activity of the Notch ligand Delta. Taken together, these data suggest that D-Cbl controls the EGFR and Notch/Delta signaling pathways through production of two alternatively spliced isoforms during development in Drosophila.
PMCID: PMC2866751  PMID: 20302857
Drosophila; cbl; D-cbl; RTK signaling; EGFR; Notch; Delta
16.  Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A 
Molecular cancer therapeutics  2009;8(5):1250-1260.
We report here that des-methyl, des-amino pateamine A (DMDA-PatA), a structurally simplified analogue of the marine natural product pateamine A, has potent antiproliferative activity against a wide variety of human cancer cell lines while showing relatively low cytotoxicity against nonproliferating, quiescent human fibroblasts. DMDA-PatA retains almost full in vitro potency in P-glycoprotein-overexpressing MES-SA/D×5-R×1 human uterine sarcoma cells that are significantly resistant to paclitaxel, suggesting that DMDA-PatA is not a substrate for P-glycoprotein-mediated drug efflux. Treatment of proliferating cells with DMDA-PatA leads to rapid shutdown of DNA synthesis in the S phase of the cell cycle. Cell-free studies show that DMDA-PatA directly inhibits DNA polymerases α and γ in vitro albeit at concentrations considerably higher than those that inhibit cell proliferation. DMDA-PatA shows potent anticancer activity in several human cancer xenograft models in nude mice, including significant regressions observed in the LOX and MDA-MB-435 melanoma models. DMDA-PatA thus represents a promising natural product-based anticancer agent that warrants further investigation.
PMCID: PMC3026899  PMID: 19417157
17.  Dual roles of Drosophila p53 in cell death and cell differentiation 
Cell death and differentiation  2009;17(6):912-921.
The mammalian p53-family consists of p53, p63 and p73. While p53 accounts for tumor suppression through cell cycle arrest and apoptosis, the functions of p63 and p73 are more diverse and also include control of cell differentiation. The Drosophila genome contains only one p53 homolog, Dp53. Previous work has established that Dp53 induces apoptosis, but not cell cycle arrest. Here, by using the developing eye as a model, we show that Dp53-induced apoptosis is primarily dependent on the pro-apoptotic gene hid, but not reaper, and occurs through the canonical apoptosis pathway. Importantly, similar to p63 and p73, expression of Dp53 also inhibits cellular differentiation of photoreceptor neurons and cone cells in the eye independently of its apoptotic function. Intriguingly, expression of the human cell cycle inhibitor p21 or its Drosophila homolog dacapo can suppress both Dp53-induced cell death and differentiation defects in Drosophila eyes. These findings provide new insights into the pathways activated by Dp53 and reveal that Dp53 incorporates functions of multiple p53-family members.
PMCID: PMC3014827  PMID: 19960025
18.  The H3K27me3 Demethylase dUTX Is a Suppressor of Notch- and Rb-Dependent Tumors in Drosophila▿  
Molecular and Cellular Biology  2010;30(10):2485-2497.
Trimethylated lysine 27 of histone H3 (H3K27me3) is an epigenetic mark for gene silencing and can be demethylated by the JmjC domain of UTX. Excessive H3K27me3 levels can cause tumorigenesis, but little is known about the mechanisms leading to those cancers. Mutants of the Drosophila H3K27me3 demethylase dUTX display some characteristics of Trithorax group mutants and have increased H3K27me3 levels in vivo. Surprisingly, dUTX mutations also affect H3K4me1 levels in a JmjC-independent manner. We show that a disruption of the JmjC domain of dUTX results in a growth advantage for mutant cells over adjacent wild-type tissue due to increased proliferation. The growth advantage of dUTX mutant tissue is caused, at least in part, by increased Notch activity, demonstrating that dUTX is a Notch antagonist. Furthermore, the inactivation of Retinoblastoma (Rbf in Drosophila) contributes to the growth advantage of dUTX mutant tissue. The excessive activation of Notch in dUTX mutant cells leads to tumor-like growth in an Rbf-dependent manner. In summary, these data suggest that dUTX is a suppressor of Notch- and Rbf-dependent tumors in Drosophila melanogaster and may provide a model for UTX-dependent tumorigenesis in humans.
PMCID: PMC2863695  PMID: 20212086
19.  PKCδ survival signaling in cells containing an activated p21Ras protein requires PDK1 
Cellular signalling  2008;21(4):502-508.
Protein kinase C δ (PKC δ) modulates cell survival and apoptosis in diverse cellular systems. We recently reported that PKCδ functions as a critical anti-apoptotic signal transducer in cells containing activated p21Ras and results in the activation of AKT, thereby promoting cell survival. How PKCδ is regulated by p21Ras, however, remains incompletely understood. In this study, we show that PKCδ, as a transducer of anti-apoptotic signals, is activated by phosphotidylinositol 3′ kinase/Phosphoinositide-dependent kinase 1 (PI3K-PDK1) to deliver the survival signal to Akt in the environment of activated p21Ras. PDK1 is upregulated in cells containing an activated p21Ras. Knockdown of PDK1, PKCδ, or AKT forces cells containing activated p21Ras to undergo apoptosis. PDK1 regulates PKCδ activity, and constitutive expression of PDK1 increases PKCδ activity in different cell types. Conversely, expression of a kinase-dead (dominant-negative) PDK1 significantly suppresses PKCδ activity. p21Ras-mediated survival signaling is therefore regulated by via a PI3K-AKT pathway, which is dependent upon both PDK1 and PKCδ, and PDK1 activates and regulates PKCδ to determine the fate of cells containing a mutated, activated p21Ras.
PMCID: PMC2644428  PMID: 19146951
PKCδ; PI3K; Akt; Protein kinase C; Apoptosis; Proliferation
20.  Common and Distinct Genetic Properties of ESCRT-II Components in Drosophila 
PLoS ONE  2009;4(1):e4165.
Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner.
Principal Findings
Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity.
The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.
PMCID: PMC2613530  PMID: 19132102
21.  vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis 
Development (Cambridge, England)  2006;133(10):1871-1880.
Appropriate cell-cell signaling is crucial for proper tissue homeostasis. Protein sorting of cell surface receptors at the early endosome is important for both the delivery of the signal and the inactivation of the receptor, and its alteration can cause malignancies including cancer. In a genetic screen for suppressors of the pro-apoptotic gene hid in Drosophila, we identified two alleles of vps25, a component of the ESCRT machinery required for protein sorting at the early endosome. Paradoxically, although vps25 mosaics were identified as suppressors of hid-induced apoptosis, vps25 mutant cells die. However, we provide evidence that a non-autonomous increase of Diap1 protein levels, an inhibitor of apoptosis, accounts for the suppression of hid. Furthermore, before they die, vps25 mutant clones trigger non-autonomous proliferation through a failure to downregulate Notch signaling, which activates the mitogenic JAK/STAT pathway. Hid and JNK contribute to apoptosis of vps25 mutant cells. Inhibition of cell death in vps25 clones causes dramatic overgrowth phenotypes. In addition, Hippo signaling is increased in vps25 clones, and hippo mutants block apoptosis in vps25 clones. In summary, the phenotypic analysis of vps25 mutants highlights the importance of receptor downregulation by endosomal protein sorting for appropriate tissue homeostasis, and may serve as a model for human cancer.
PMCID: PMC2519036  PMID: 16611691
Vps25; ESCRT; Protein sorting; MVB; Notch; Cell proliferation; Cell survival; Apoptosis
22.  The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously 
Development (Cambridge, England)  2007;135(1):43-52.
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene.
PMCID: PMC2277323  PMID: 18045837
Uba1; E1; Ubiquitin-activating enzyme; Apoptosis; Proliferation; Drosophila; Autonomous control; Non autonomous control
23.  SCAPER, a novel cyclin A–interacting protein that regulates cell cycle progression 
The Journal of Cell Biology  2007;178(4):621-633.
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase– from M phase–specific functions of cyclin A/Cdk2.
PMCID: PMC2064469  PMID: 17698606
24.  Drosophila cbl Is Essential for Control of Cell Death and Cell Differentiation during Eye Development 
PLoS ONE  2008;3(1):e1447.
Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.
Methodology/Principal Findings
Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.
These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.
PMCID: PMC2180199  PMID: 18197257
25.  CP110 Cooperates with Two Calcium-binding Proteins to Regulate Cytokinesis and Genome Stability 
Molecular Biology of the Cell  2006;17(8):3423-3434.
The centrosome is an integral component of the eukaryotic cell cycle machinery, yet very few centrosomal proteins have been fully characterized to date. We have undertaken a series of biochemical and RNA interference (RNAi) studies to elucidate a role for CP110 in the centrosome cycle. Using a combination of yeast two-hybrid screens and biochemical analyses, we report that CP110 interacts with two different Ca2+-binding proteins, calmodulin (CaM) and centrin, in vivo. In vitro binding experiments reveal a direct, robust interaction between CP110 and CaM and the existence of multiple high-affinity CaM-binding domains in CP110. Native CP110 exists in large (∼300 kDa to 3 MDa) complexes that contain both centrin and CaM. We investigated a role for CP110 in CaM-mediated events using RNAi and show that its depletion leads to a failure at a late stage of cytokinesis and the formation of binucleate cells, mirroring the defects resulting from ablation of either CaM or centrin function. Importantly, expression of a CP110 mutant unable to bind CaM also promotes cytokinesis failure and binucleate cell formation. Taken together, our data demonstrate a functional role for CaM binding to CP110 and suggest that CP110 cooperates with CaM and centrin to regulate progression through cytokinesis.
PMCID: PMC1525247  PMID: 16760425

Results 1-25 (30)