PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer 
Wang, Yufei | McKay, James D. | Rafnar, Thorunn | Wang, Zhaoming | Timofeeva, Maria | Broderick, Peter | Zong, Xuchen | Laplana, Marina | Wei, Yongyue | Han, Younghun | Lloyd, Amy | Delahaye-Sourdeix, Manon | Chubb, Daniel | Gaborieau, Valerie | Wheeler, William | Chatterjee, Nilanjan | Thorleifsson, Gudmar | Sulem, Patrick | Liu, Geoffrey | Kaaks, Rudolf | Henrion, Marc | Kinnersley, Ben | Vallée, Maxime | LeCalvez-Kelm, Florence | Stevens, Victoria L. | Gapstur, Susan M. | Chen, Wei V. | Zaridze, David | Szeszenia-Dabrowska, Neonilia | Lissowska, Jolanta | Rudnai, Peter | Fabianova, Eleonora | Mates, Dana | Bencko, Vladimir | Foretova, Lenka | Janout, Vladimir | Krokan, Hans E. | Gabrielsen, Maiken Elvestad | Skorpen, Frank | Vatten, Lars | Njølstad, Inger | Chen, Chu | Goodman, Gary | Benhamou, Simone | Vooder, Tonu | Valk, Kristjan | Nelis, Mari | Metspalu, Andres | Lener, Marcin | Lubiński, Jan | Johansson, Mattias | Vineis, Paolo | Agudo, Antonio | Clavel-Chapelon, Francoise | Bueno-de-Mesquita, H.Bas | Trichopoulos, Dimitrios | Khaw, Kay-Tee | Johansson, Mikael | Weiderpass, Elisabete | Tjønneland, Anne | Riboli, Elio | Lathrop, Mark | Scelo, Ghislaine | Albanes, Demetrius | Caporaso, Neil E. | Ye, Yuanqing | Gu, Jian | Wu, Xifeng | Spitz, Margaret R. | Dienemann, Hendrik | Rosenberger, Albert | Su, Li | Matakidou, Athena | Eisen, Timothy | Stefansson, Kari | Risch, Angela | Chanock, Stephen J. | Christiani, David C. | Hung, Rayjean J. | Brennan, Paul | Landi, Maria Teresa | Houlston, Richard S. | Amos, Christopher I.
Nature genetics  2014;46(7):736-741.
We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants of BRCA2-K3326X (rs11571833; odds ratio [OR]=2.47, P=4.74×10−20) and of CHEK2-I157T (rs17879961; OR=0.38 P=1.27×10−13). We also showed an association between common variation at 3q28 (TP63; rs13314271; OR=1.13, P=7.22×10−10) and lung adenocarcinoma previously only reported in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants having substantive effects on cancer risk from pre-existing GWAS data.
doi:10.1038/ng.3002
PMCID: PMC4074058  PMID: 24880342
2.  Association between putative functional variants in the PSMB9 gene and risk of melanoma - re-analysis of published melanoma genome-wide association studies 
Pigment cell & melanoma research  2013;26(3):10.1111/pcmr.12069.
Summary
To mine possibly hidden causal single nucleotide polymorphisms (SNPs) in the etiology of melanoma, we investigated the association of SNPs in 76 M/G1 transition genes with melanoma risk using our published genome-wide association study (GWAS) dataset with 1804 melanoma cases and 1,026 cancer-free controls. We found multiple SNPs with P < 0.01 and performed validation studies for 18 putative functional SNPs in PSMB9 in other two GWAS datasets. Two SNPs (rs1351383 and rs2127675) were associated with melanoma risk in the GenoMEL dataset (P = 0.013 and 0.004, respectively), but failed validation in the Australia dataset. Genotype-phenotype analysis revealed these two SNPs were significantly correlated with mRNA expression levels of PSMB9. Further experiments revealed that the promoter SNP rs2071480, which is in high LD with rs1351383 and rs2127675, involved in influencing transcription factor binding and gene expression. Taken together, our data suggested that functional variants in PSMB9 may contribute to melanoma susceptibility.
doi:10.1111/pcmr.12069
PMCID: PMC3721546  PMID: 23360169
GWAS; Cell cycle; PSMB9; Polymorphism; melanoma
3.  Association between functional polymorphisms in genes involved in the MAPK signaling pathways and cutaneous melanoma risk 
Carcinogenesis  2013;34(4):885-892.
Genome-wide association studies (GWASs) have mainly focused on top significant single nucleotide polymorphisms (SNPs), most of which did not have clear biological functions but were just surrogates for unknown causal variants. Studying SNPs with modest association and putative functions in biologically plausible pathways has become one complementary approach to GWASs. To unravel the key roles of mitogen-activated protein kinase (MAPK) pathways in cutaneous melanoma (CM) risk, we re-evaluated the associations between 47 818 SNPs in 280 MAPK genes and CM risk using our published GWAS dataset with 1804 CM cases and 1026 controls. We initially found 105 SNPs with P ≤ 0.001, more than expected by chance, 26 of which were predicted to be putatively functional SNPs. The risk associations with 16 SNPs around DUSP14 (rs1051849) and a previous reported melanoma locus MAFF/PLA2G6 (proxy SNP rs4608623) were replicated in the GenoMEL dataset (P < 0.01) but failed in the Australian dataset. Meta-analysis showed that rs1051849 in the 3ʹ untranslated regions of DUSP14 was associated with a reduced risk of melanoma (odds ratio = 0.89, 95% confidence interval: 0.82–0.96, P = 0.003, false discovery rate = 0.056). Further genotype–phenotype correlation analysis using the 90 HapMap lymphoblastoid cell lines from Caucasians showed significant correlations between two SNPs (rs1051849 and rs4608623) and messenger RNA expression levels of DUSP14 and MAFF (P = 0.025 and P = 0.010, respectively). Gene-based tests also revealed significant SNPs were over-represented in MAFF, PLA2G6, DUSP14 and other 16 genes. Our results suggest that functional SNPs in MAPK pathways may contribute to CM risk. Further studies are warranted to validate our findings.
doi:10.1093/carcin/bgs407
PMCID: PMC3616673  PMID: 23291271
4.  Whole-genome detection of disease-associated deletions or excess homozygosity in a case–control study of rheumatoid arthritis 
Human Molecular Genetics  2012;22(6):1249-1261.
Unlike genome-wide association studies, few comprehensive studies of copy number variation's contribution to complex human disease susceptibility have been performed. Copy number variations are abundant in humans and represent one of the least well-studied classes of genetic variants; in addition, known rheumatoid arthritis susceptibility loci explain only a portion of familial clustering. Therefore, we performed a genome-wide study of association between deletion or excess homozygosity and rheumatoid arthritis using high-density 550 K SNP genotype data from a genome-wide association study. We used a genome-wide statistical method that we recently developed to test each contiguous SNP locus between 868 cases and 1194 controls to detect excess homozygosity or deletion variants that influence susceptibility. Our method is designed to detect statistically significant evidence of deletions or homozygosity at individual SNPs for SNP-by-SNP analyses and to combine the information among neighboring SNPs for cluster analyses. In addition to successfully detecting the known deletion variants on major histocompatibility complex, we identified 4.3 and 28 kb clusters on chromosomes 10p and 13q, respectively, which were significant at a Bonferroni-type-corrected 0.05 nominal significant level. Independently, we performed analyses using PennCNV, an algorithm for identifying and cataloging copy numbers for individuals based on a hidden Markov model, and identified cases and controls that had chromosomal segments with copy number <2. Using Fisher's exact test for comparing the numbers of cases and controls with copy number <2 per SNP, we identified 26 significant SNPs (protective; more controls than cases) aggregating on chromosome 14 with P-values <10−8.
doi:10.1093/hmg/dds512
PMCID: PMC3578409  PMID: 23223014
5.  Cell cycle–related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients 
Carcinogenesis  2012;34(2):299-306.
Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle–related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle–related genes and 31 DNA repair–related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan–Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5×10–4). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16–6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome.
doi:10.1093/carcin/bgs344
PMCID: PMC3564440  PMID: 23125224
6.  Genome-wide association study identifies novel loci predisposing to cutaneous melanoma† 
Human Molecular Genetics  2011;20(24):5012-5023.
We performed a multistage genome-wide association study of melanoma. In a discovery cohort of 1804 melanoma cases and 1026 controls, we identified loci at chromosomes 15q13.1 (HERC2/OCA2 region) and 16q24.3 (MC1R) regions that reached genome-wide significance within this study and also found strong evidence for genetic effects on susceptibility to melanoma from markers on chromosome 9p21.3 in the p16/ARF region and on chromosome 1q21.3 (ARNT/LASS2/ANXA9 region). The most significant single-nucleotide polymorphisms (SNPs) in the 15q13.1 locus (rs1129038 and rs12913832) lie within a genomic region that has profound effects on eye and skin color; notably, 50% of variability in eye color is associated with variation in the SNP rs12913832. Because eye and skin colors vary across European populations, we further evaluated the associations of the significant SNPs after carefully adjusting for European substructure. We also evaluated the top 10 most significant SNPs by using data from three other genome-wide scans. Additional in silico data provided replication of the findings from the most significant region on chromosome 1q21.3 rs7412746 (P = 6 × 10−10). Together, these data identified several candidate genes for additional studies to identify causal variants predisposing to increased risk for developing melanoma.
doi:10.1093/hmg/ddr415
PMCID: PMC3298855  PMID: 21926416
7.  Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk 
Carcinogenesis  2011;32(10):1493-1499.
Chromosome 5p15.33 has been identified by genome-wide association studies as one of the regions that associate with lung cancer risk. A few single-nucleotide polymorphisms (SNPs) in the telomerase reverse transcriptase (TERT) and cleft lip and palate transmembrane 1-like (CLPTM1L) genes located in this region have shown consistent associations. We performed dense genotyping of SNPs in this region to refine the previously reported association signals for lung cancer risk. Two hundred and fifteen SNPs were genotyped on an Illumina iSelect panel, in a hospital-based case–control study of 1681 lung cancer cases and 1235 unaffected controls. Association was tested using unconditional logistic regression, while adjusting for age, sex and pack-years smoked. Furthermore, since many of the SNPs were in linkage disequilibrium (LD), haplotype blocks were constructed, from which tagging SNPs at an r2 threshold of ≥0.95 were included in a stepwise forward selection logistic regression model. Of the 215 SNPs, 69 were significant at P < 0.05 in univariate analysis; of these, 35 SNPs meeting the r2 threshold were included in the multiple logistic regression model. Two SNPs, rs370348 (odds ratio = 0.76, P = 1.6 × 10−6) and rs4975538 (odds ratio = 1.18, P = 0.005), significantly associated with risk in the overall sample. Among ever smokers, rs4975615 (odds ratio = 0.75, P = 1.2 × 10−4) and rs4975538 (odds ratio = 1.26, P = 0.002) were significant, whereas among never-smokers, rs451360 (odds ratio = 0.62, P = 7.6 × 10−5) was significant. We refined the consistent association signal in this region, allowing for the considerable LD between SNPs and identified four novel SNPs that were independently and significantly associated with lung cancer risk. Results of these analyses strongly suggest effects on risk from several loci in the TERT/CLPTM1L region.
doi:10.1093/carcin/bgr136
PMCID: PMC3179422  PMID: 21771723
8.  An analysis of single nucleotide polymorphisms of 125 DNA repair genes in the Texas genome-wide association study of lung cancer with a replication for the XRCC4 SNPs 
DNA repair  2011;10(4):398-407.
DNA repair genes are important for maintaining genomic stability and limiting carcinogenesis. We analyzed all single nucleotide polymorphisms (SNPs) of 125 DNA repair genes covered by the Illumina HumanHap300 (v1.1) BeadChips in a previously conducted genome-wide association study (GWAS) of 1,154 lung cancer cases and 1,137 controls and replicated the top-hits of XRCC4 SNPs in an independent set of 597 cases and 611 controls in Texas populations. We found that six of 20 XRCC4 SNPs were associated with a decreased risk of lung cancer with a P value of 0.01 or lower in the discovery dataset, of which the most significant SNP was rs10040363 (P for allelic test = 4.89 ×10−4). Moreover, the data in this region allowed us to impute a potentially functional SNP rs2075685 (imputed P for allelic test = 1.3 ×10−3). A luciferase reporter assay demonstrated that the rs2075685G>T change in the XRCC4 promoter increased expression of the gene. In the replication study of rs10040363, rs1478486, rs9293329, and rs2075685, however, only rs10040363 achieved a borderline association with a decreased risk of lung cancer in a dominant model (adjusted OR = 0.80, 95% CI = 0.62–1.03, P = 0.079). In the final combined analysis of both the Texas GWAS discovery and replication datasets, the strength of the association was increased for rs10040363 (adjusted OR = 0.77, 95% CI = 0.66–0.89, Pdominant = 5×10−4 and P for trend = 5×10−4) and rs1478486 (adjusted OR = 0.82, 95% CI = 0.71 −0.94, Pdominant = 6×10−3 and P for trend = 3.5×10−3). Finally, we conducted a meta-analysis of these XRCC4 SNPs with available data from published GWA studies of lung cancer with a total of 12,312 cases and 47,921 controls, in which none of these XRCC4 SNPs was associated with lung cancer risk. It appeared that rs2075685, although associated with increased expression of a reporter gene and lung cancer risk in the Texas populations, did not have an effect on lung cancer risk in other populations. This study underscores the importance of replication using published data in larger populations.
doi:10.1016/j.dnarep.2011.01.005
PMCID: PMC3062723  PMID: 21296624
XRCC4; variant; Genetic susceptibility; genome-wide association study; replication study
9.  Association of a novel functional promoter variant (rs2075533 C>T) in the apoptosis gene TNFSF8 with risk of lung cancer—a finding from Texas lung cancer genome-wide association study 
Carcinogenesis  2011;32(4):507-515.
Published genome-wide association studies (GWASs) have identified few variants in the known biological pathways involved in lung cancer etiology. To mine the possibly hidden causal single nucleotide polymorphisms (SNPs), we explored all SNPs in the extrinsic apoptosis pathway from our published GWAS dataset for 1154 lung cancer cases and 1137 cancer-free controls. In an initial association analysis of 611 tagSNPs in 41 apoptosis-related genes, we identified only 10 tagSNPs associated with lung cancer risk with a P value <10−2, including four tagSNPs in DAPK1 and three tagSNPs in TNFSF8. Unlike DAPK1 SNPs, TNFSF8 rs2181033 tagged other four predicted functional but untyped SNPs (rs776576, rs776577, rs31813148 and rs2075533) in the promoter region. Therefore, we further tested binding affinity of these four SNPs by performing the electrophoretic mobility shift assay. We found that only rs2075533T allele modified levels of nuclear proteins bound to DNA, leading to significantly decreased expression of luciferase reporter constructs by 5- to –10-fold in H1299, HeLa and HCT116 cell lines compared with the C allele. We also performed a replication study of the untyped rs2075533 in an independent Texas population but did not confirm the protective effect. We further performed a mini meta-analysis for SNPs of TNFSF8 obtained from other four published lung cancer GWASs with 12  214 cases and 47  721 controls, and we found that only rs3181366 (r2 = 0.69 with the untyped rs2075533) was associated to lung cancer risk (P = 0.008). Our findings suggest a possible role of novel TNFSF8 variants in susceptibility to lung cancer.
doi:10.1093/carcin/bgr014
PMCID: PMC3066422  PMID: 21292647
10.  Genome-wide association study in alopecia areata implicates both innate and adaptive immunity 
Nature  2010;466(7302):113-117.
Alopecia areata (AA) is among the most highly prevalent human autoimmune diseases, leading to disfiguring hair loss due to the collapse of immune privilege of the hair follicle and subsequent autoimmune attack1,2. The genetic basis of AA is largely unknown. We undertook a genome-wide association study (GWAS) in a sample of 1,054 cases and 3,278 controls and identified 139 single nucleotide polymorphisms that are significantly associated with AA (P ≤ 5 × 10−7). Here we show an association with genomic regions containing several genes controlling the activation and proliferation of regulatory T cells (Treg cells), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), interleukin (IL)-2/IL-21, IL-2 receptor A (IL-2RA; CD25) and Eos (also known as Ikaros family zinc finger 4; IKZF4), as well as the human leukocyte antigen (HLA) region. We also find association evidence for regions containing genes expressed in the hair follicle itself (PRDX5 and STX17). A region of strong association resides within the ULBP (cytomegalovirus UL16-binding protein) gene cluster on chromosome 6q25.1, encoding activating ligands of the natural killer cell receptor NKG2D that have not previously been implicated in an autoimmune disease. By probing the role of ULBP3 in disease pathogenesis, we also show that its expression in lesional scalp from patients with AA is markedly upregulated in the hair follicle dermal sheath during active disease. This study provides evidence for the involvement of both innate and acquired immunity in the pathogenesis of AA. We have defined the genetic underpinnings of AA, placing it within the context of shared pathways among autoimmune diseases, and implicating a novel disease mechanism, the upregulation of ULBP ligands, in triggering autoimmunity.
doi:10.1038/nature09114
PMCID: PMC2921172  PMID: 20596022
11.  Detection of disease-associated deletions in case–control studies using SNP genotypes with application to rheumatoid arthritis 
Human genetics  2009;126(2):303-315.
Genomic deletions have long been known to play a causative role in microdeletion syndromes. Recent whole-genome genetic studies have shown that deletions can increase the risk for several psychiatric disorders, suggesting that genomic deletions play an important role in the genetic basis of complex traits. However, the association between genomic deletions and common, complex diseases has not yet been systematically investigated in gene mapping studies. Likelihood-based statistical methods for identifying disease-associated deletions have recently been developed for familial studies of parent-offspring trios. The purpose of this study is to develop statistical approaches for detecting genomic deletions associated with complex disease in case–control studies. Our methods are designed to be used with dense single nucleotide polymorphism (SNP) genotypes to detect deletions in large-scale or whole-genome genetic studies. As more and more SNP genotype data for genome-wide association studies become available, development of sophisticated statistical approaches will be needed that use these data. Our proposed statistical methods are designed to be used in SNP-by-SNP analyses and in cluster analyses based on combined evidence from multiple SNPs. We found that these methods are useful for detecting disease-associated deletions and are robust in the presence of linkage disequilibrium using simulated SNP data sets. Furthermore, we applied the proposed statistical methods to SNP genotype data of chromosome 6p for 868 rheumatoid arthritis patients and 1,197 controls from the North American Rheumatoid Arthritis Consortium. We detected disease-associated deletions within the region of human leukocyte antigen in which genomic deletions were previously discovered in rheumatoid arthritis patients.
doi:10.1007/s00439-009-0672-3
PMCID: PMC2992885  PMID: 19415332
12.  TRAF1-C5 as a Risk Locus for Rheumatoid Arthritis — A Genomewide Study 
The New England journal of medicine  2007;357(12):1199-1209.
BACKGROUND
Rheumatoid arthritis has a complex mode of inheritance. Although HLA-DRB1 and PTPN22 are well-established susceptibility loci, other genes that confer a modest level of risk have been identified recently. We carried out a genomewide association analysis to identify additional genetic loci associated with an increased risk of rheumatoid arthritis.
METHODS
We genotyped 317,503 single-nucleotide polymorphisms (SNPs) in a combined case-control study of 1522 case subjects with rheumatoid arthritis and 1850 matched control subjects. The patients were seropositive for autoantibodies against cyclic citrullinated peptide (CCP). We obtained samples from two data sets, the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA). Results from NARAC and EIRA for 297,086 SNPs that passed quality-control filters were combined with the use of Cochran-Mantel-Haenszel stratified analysis. SNPs showing a significant association with disease (P<1×10-8) were genotyped in an independent set of case subjects with anti-CCP-positive rheumatoid arthritis (485 from NARAC and 512 from EIRA) and in control subjects (1282 from NARAC and 495 from EIRA).
RESULTS
We observed associations between disease and variants in the major-histocompatibility-complex locus, in PTPN22, and in a SNP (rs3761847) on chromosome 9 for all samples tested, the latter with an odds ratio of 1.32 (95% confidence interval, 1.23 to 1.42; P = 4×10-14). The SNP is in linkage disequilibrium with two genes relevant to chronic inflammation: TRAF1 (encoding tumor necrosis factor receptor-associated factor 1) and C5 (encoding complement component 5).
CONCLUSIONS
A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis.
doi:10.1056/NEJMoa073491
PMCID: PMC2636867  PMID: 17804836
13.  STAT4 and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus 
The New England journal of medicine  2007;357(10):977-986.
BACKGROUND
Rheumatoid arthritis is a chronic inflammatory disease with a substantial genetic component. Susceptibility to disease has been linked with a region on chromosome 2q.
METHODS
We tested single-nucleotide polymorphisms (SNPs) in and around 13 candidate genes within the previously linked chromosome 2q region for association with rheumatoid arthritis. We then performed fine mapping of the STAT1-STAT4 region in a total of 1620 case patients with established rheumatoid arthritis and 2635 controls, all from North America. Implicated SNPs were further tested in an independent case-control series of 1529 patients with early rheumatoid arthritis and 881 controls, all from Sweden, and in a total of 1039 case patients and 1248 controls from three series of patients with systemic lupus erythematosus.
RESULTS
A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P = 2.81×10-7; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P = 0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P = 1.87×10-9; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis.
CONCLUSIONS
A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
doi:10.1056/NEJMoa073003
PMCID: PMC2630215  PMID: 17804842
14.  Comparison of genome-wide single-nucleotide polymorphism linkage analyses in Caucasian and Hispanic NARAC families 
BMC Proceedings  2007;1(Suppl 1):S97.
We performed linkage analysis on families with rheumatoid arthritis, stratifying by ethnic origin. We compared results using either Kong and Cox nonparametric LOD scores or MOD score analysis using the software GeneHunter MODSCORE. We first applied SNPLINK to remove markers showing excess linkage disequilibrium from the SNPs in the Illumina IV SNP Linkage panel. In this analysis there were 659 self-reported Caucasian families and 29 self-reported Hispanic families in the NARAC collection. Chromosome 19 yielded MOD scores > 3.00 in the Hispanic group, while chromosomes 2, 6, 7, 11, and XY had MOD scores > 3.00 in the Caucasian group. We performed simulation studies to evaluate the empirical distribution of the MOD score for autosomal loci separately in Hispanics and Caucasians. Results showed genome-wide significant evidence for linkage in Caucasians for chromosomes 2q and 6p, but no significant evidence for any linkages in the Hispanics, including little evidence for linkage to chromosome 6p in this group. An examination of the difference of phenotypes in two ethnic groups suggested significantly earlier mean age of onset, higher percentage of anti-cyclic citrullinated peptide positive people, and lower percentage of affected people carrying shared epitopes in Hispanics than those in Caucasians. A larger sample size of the Hispanic group is needed to identify linkage regions.
PMCID: PMC2367594  PMID: 18466601

Results 1-14 (14)