Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  TolC Promotes ExPEC Biofilm Formation and Curli Production in Response to Medium Osmolarity 
BioMed Research International  2014;2014:574274.
While a high osmolarity medium activates Cpx signaling and causes CpxR to repress csgD expression, and efflux protein TolC protein plays an important role in biofilm formation in Escherichia coli, whether TolC also responds to an osmolarity change to regulate biofilm formation in extraintestinal pathogenic E. coli (ExPEC) remains unknown. In this study, we constructed ΔtolC mutant and complement ExPEC strains to investigate the role of TolC in the retention of biofilm formation and curli production capability under different osmotic conditions. The ΔtolC mutant showed significantly decreased biofilm formation and lost the ability to produce curli fimbriae compared to its parent ExPEC strain PPECC42 when cultured in M9 medium or 1/2 M9 medium of increased osmolarity with NaCl or sucrose at 28°C. However, biofilm formation and curli production levels were restored to wild-type levels in the ΔtolC mutant in 1/2 M9 medium. We propose for the first time that TolC protein is able to form biofilm even under high osmotic stress. Our findings reveal an interplay between the role of TolC in ExPEC biofilm formation and the osmolarity of the surrounding environment, thus providing guidance for the development of a treatment for ExPEC biofilm formation.
PMCID: PMC4163439  PMID: 25243151
2.  Pseudorabies Virus Infected Porcine Epithelial Cell Line Generates a Diverse Set of Host MicroRNAs and a Special Cluster of Viral MicroRNAs 
PLoS ONE  2012;7(1):e30988.
Pseudorabies virus (PRV) belongs to Alphaherpesvirinae subfamily that causes huge economic loss in pig industry worldwide. It has been recently demonstrated that many herpesviruses encode microRNAs (miRNAs), which play crucial roles in viral life cycle. However, the knowledge about PRV-encoded miRNAs is still limited. Here, we report a comprehensive analysis of both viral and host miRNA expression profiles in PRV-infected porcine epithelial cell line (PK-15). Deep sequencing data showed that the ∼4.6 kb intron of the large latency transcript (LLT) functions as a primary microRNA precursor (pri-miRNA) that encodes a cluster of 11 distinct miRNAs in the PRV genome, and 209 known and 39 novel porcine miRNAs were detected. Viral miRNAs were further confirmed by stem-loop RT-PCR and northern blot analysis. Intriguingly, all of these viral miRNAs exhibited terminal heterogeneity both at the 5′ and 3′ ends. Seven miRNA genes produced mature miRNAs from both arms and two of the viral miRNA genes showed partially overlapped in their precursor regions. Unexpectedly, a terminal loop-derived small RNA with high abundance and one special miRNA offset RNA (moRNA) were processed from a same viral miRNA precursor. The polymorphisms of viral miRNAs shed light on the complexity of host miRNA-processing machinery and viral miRNA-regulatory mechanism. The swine genes and PRV genes were collected for target prediction of the viral miRNAs, revealing a complex network formed by both host and viral genes. GO enrichment analysis of host target genes suggests that PRV miRNAs are involved in complex cellular pathways including cell death, immune system process, metabolic pathway, indicating that these miRNAs play significant roles in virus-cells interaction of PRV and its hosts. Collectively, these data suggest that PRV infected epithelial cell line generates a diverse set of host miRNAs and a special cluster of viral miRNAs, which might facilitate PRV replication in cells.
PMCID: PMC3264653  PMID: 22292087
3.  MicroRNA Expression Profile in RAW264.7 cells in Response to Brucella melitensis Infection 
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3′ UTR, but the luciferase activity of psiCHECK-2 Bid 3′ UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.
PMCID: PMC3421232  PMID: 22904669
Brucella; RAW264.7; microRNA; high-throughput sequencing; apoptosis; autophagy
4.  Diagnosis and molecular characterization of rabies virus from a buffalo in China: a case report 
Virology Journal  2011;8:101.
Rabies virus (RABV) can infect many different species of warm-blooded animals. Glycoprotein G plays a key role in viral pathogenicity and neurotropism, and includes antigenic domains that are responsible for membrane fusion and host cell receptor recognition.
Case presentation
A case of buffalo rabies in China was diagnosed by direct fluorescent antibody test, G gene reverse-transcriptase polymerase chain reaction, and RABV mouse inoculation test. Molecular characterization of the RABV was performed using DNA sequencing, phylogenetic analysis and amino acid sequence comparison based on the G gene from different species of animals.
The results confirmed that the buffalo with suspected rabies was infected by RABV, which was genetically closely related to HNC (FJ602451) that was isolated from cattle in China in 2007. Comparison of the G gene among different species of animal showed that there were almost no amino acid changes among RABVs isolated from the same species of animals that distributed in a near region. However, there were many changes among RABVs that were isolated from different species of animal, or the same species from different geographic regions. This is believed to be the first case report of buffalo rabies in China, and the results may provide further information to understand the mechanism by which RABV breaks through the species barrier.
PMCID: PMC3061937  PMID: 21375773

Results 1-4 (4)