PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  SH2B1β Interacts with STAT3 and Enhances Fibroblast Growth Factor 1-Induced Gene Expression during Neuronal Differentiation 
Molecular and Cellular Biology  2014;34(6):1003-1019.
Neurite outgrowth is an essential process during neuronal differentiation as well as neuroregeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neurological diseases. We have previously shown that overexpression of the signaling adaptor protein SH2B1β promotes fibroblast growth factor 1 (FGF1)-induced neurite outgrowth (W. F. Lin, C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu, and L. Chen, Cell. Signal. 21:1060–1072, 2009). SH2B1β also undergoes nucleocytoplasmic shuttling and regulates a subset of neurotrophin-induced genes. Although these findings suggest that SH2B1β regulates gene expression, the nuclear role of SH2B1β was not known. In this study, we show that SH2B1β interacts with the transcription factor, signal transducer, and activator of transcription 3 (STAT3) in neuronal PC12 cells, cortical neurons, and COS7 fibroblasts. By affecting the subcellular distribution of STAT3, SH2B1β increased serine phosphorylation and the concomitant transcriptional activity of STAT3. As a result, overexpressing SH2B1β enhanced FGF1-induced expression of STAT3 target genes Egr1 and Cdh2. Chromatin immunoprecipitation assays further reveal that, in response to FGF1, overexpression of SH2B1β promotes the in vivo occupancy of STAT3-Sp1 heterodimers at the promoter of Egr1 and Cdh2. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
doi:10.1128/MCB.00940-13
PMCID: PMC3958036  PMID: 24396070
2.  A biocompatible magnetic film: synthesis and characterization 
Background
Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites.
Methods
A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel.
Results
The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior.
Conclusion
Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles.
doi:10.1186/1477-044X-2-2
PMCID: PMC373455  PMID: 14761251

Results 1-2 (2)