Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Proteasome regulators: activators and inhibitors 
Current medicinal chemistry  2009;16(8):931-939.
This mini review covers the drug discovery aspect of both proteasome activators and inhibitors. The proteasome is involved in many essential cellular functions, such as regulation of cell cycle, cell differentiation, signal transduction pathways, antigen processing for appropriate immune responses, stress signaling, inflammatory responses, and apoptosis. Due to the importance of the proteasome in cellular functions, inhibition or activation of the proteasome could become a useful therapeutic strategy for a variety of diseases. Many proteasome inhibitors have been identified and can be classified into two groups according to their source: chemically synthesized small molecules and compounds derived from natural products. A successful case of developing a proteasome inhibitor as a clinically useful drug is that the peptide boronate, PS341 (Bortezomib), was approved for the treatment of multiple myeloma. In contrast to proteasome inhibitors, small molecules that can activate or enhance proteasome activity are rare and are not well studied. The fact that over-expression of the cellular proteasome activator PA28 exhibited beneficial effects on the Huntington’s disease neuronal model cells raised the prospect that small molecule proteasome activators could become useful therapeutics. The beneficial effect of oleuropein, a small molecule proteasome activator, on senescence of human fibroblasts also suggested that proteasome activators might have the potential to be developed into anti-aging agents.
PMCID: PMC3608511  PMID: 19275603
Proteasome; activator; inhibitor; natural products; betulinic acids; peptides; anti-cancer; bortezomib
2.  The Role of Dynamin in HIV Type 1 Env-Mediated Cell–Cell Fusion 
AIDS Research and Human Retroviruses  2011;27(9):1013-1017.
HIV-1 envelope glycoproteins are the key viral proteins that mediate HIV-1 entry and cell–cell fusion. In contrast to HIV-1 entry, the mechanism of HIV-1 Env-mediated cell–cell fusion is relatively unclear. This study demonstrated that dynasore, a dynamin inhibitor, suppressed HIV-1 Env-mediated cell–cell fusion. Dynasore sensitivity of HIV-1 Env-mediated cell–cell fusion varied depending on the viral strains. Results from testing a panel of gp41 cytoplasmic tail truncation mutants suggested that the gp41 cytoplasmic tail might play a role in dynasore sensitivity. HIV-1 Env-mediated cell–cell fusion could also be suppressed by a dynamin dominant-negative mutant DNM2(K44A). In summary, these results suggested that dynamin 2 might play a role in HIV-1 Env-mediated cell–cell fusion.
PMCID: PMC3161105  PMID: 21338326
3.  Synthesis and proteasome inhibition of lithocholic acid derivatives 
A new class of proteasome inhibitors was synthesized using lithocholic acid as a scaffold. Modification at the C-3 position of lithocholic acid with a series of acid acyl groups yielded compounds with a range of potency on proteasome inhibition. Among them, the phenylene diacetic acid hemiester derivative (13) displayed the most potent proteasome inhibition with IC50 = 1.9 μM. Enzyme kinetic analysis indicates that these lithocholic acid derivatives are non-competitive inhibitors of the proteasome.
PMCID: PMC3072167  PMID: 21388808
Lithocholic acid; proteasome; proteasome inhibitor
4.  Synthesis and Proteasome Inhibition of Glycyrrhetinic Acid Derivatives 
Bioorganic & medicinal chemistry  2008;16(14):6696-6701.
This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3 µM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC50 of 0.22 µM, which was approximately 100-fold more potent than glycyrrhetinic acid.
PMCID: PMC2579312  PMID: 18562200
Glycyrrhetinic acid; proteasome inhibitor; triterpene
5.  Activation and inhibition of proteasomes by betulinic acid and its derivatives 
FEBS letters  2007;581(25):4955-4959.
This study discovered that betulinic acid (BA) is a potent proteasome activator that preferentially activates the chymotrypsin-like activity of proteasomes. Chemical modifications can transform BA into proteasome inhibitors. Chemical modifications at the C-3 position of BA resulted in compounds, such as dimethylsuccinyl BA (DSB), with various inhibitory activities against human 20S proteasomes. Interestingly, the proteasomal activation by BA and the inhibitory activity of DSB could be abrogated by introducing a side chain at the C-28 position. In summary, this study discovered a class of small molecules that can either activate or inhibit human proteasome activity depending on side chain modifications.
PMCID: PMC2083647  PMID: 17904555
Betulinic acid; proteasome inhibitor; proteasome activator
6.  Phenolic Diterpenoid Derivatives as Anti-Influenza A Virus Agents 
ACS Medicinal Chemistry Letters  2015;6(3):355-358.
A series of diterpenoid derivatives based on podocarpic acid were synthesized and evaluated as anti-influenza A virus agents. Several of the novel podocarpic acid derivatives exhibited nanomolar activities against an H1N1 influenza A virus (A/Puerto Rico/8/34) that was resistant to two anti-influenza drugs, oseltamivir and amantadine. This class of compounds inhibits the influenza virus by targeting the viral hemagglutinin-mediated membrane fusion. These results indicated that podocarpic acid derivatives may serve as potential drug candidates to fight drug-resistant influenza A virus infections.
PMCID: PMC4360168  PMID: 25815159
Influenza A; influenza inhibitor; podocarpic acid; totarol; hemagglutinin
7.  Discovery of novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9 
MedChemComm  2014;6(3):444-454.
Based on a 3D-QSAR pharmacophore derived from a diverse set of known cyclin-dependent kinase 9 (CDK9) inhibitors and a composite pharmacophore extracted from the complex structure of flavopiridol (FVP)-CDK9, thirty novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamine derivatives were designed and synthesized. Initial tests against four tumor cell lines with the sulforhodamine B (SRB) assay identified a series of potent compounds with GI50 values at lower micromolar or submicromolar level. Most of the highly cytotoxic compounds exhibited potent inhibitory activities against both CDK2/cyclin E1 and CDK9/cyclin T1. Notably, inhibitions against the two enzymes were generally correlated well with the cytotoxicity of these compounds. Appreciable inhibition was also observed for selected compounds in the anti-HIV-1 assay. Docking studies on compounds 6d and 9g provided conducive clues to further structural optimization.
PMCID: PMC4406325  PMID: 25914804
5-fluoro-N2; N4-diphenylpyrimidine-2, 4-diamines; cyclin-dependent kinases; pharmacophore; cytotoxicity; anti-HIV-1
8.  Gnidimacrin, the Potent Anti-HIV Diterpene Can Eliminate Latent HIV-1 Ex Vivo by Activation of PKC Beta 
Journal of medicinal chemistry  2015;58(21):8638-8646.
HIV-1 latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells (PBMC). GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication.
TOC graphic
PMCID: PMC4767159  PMID: 26509731
Gnidimacrin; PKC agonist; HIV-1 latency; HIV-1 latency reversing agent
9.  Two Small Molecules Block Oral Epithelial Cell Invasion by Porphyromons gingivalis 
PLoS ONE  2016;11(2):e0149618.
Porphyromonas gingivalis is a keystone pathogen of periodontitis. One of its bacterial characteristics is the ability to invade various host cells, including nonphagocytic epithelial cells and fibroblasts, which is known to facilitate P. gingivalis adaptation and survival in the gingival environment. In this study, we investigated two small compounds, Alop1 and dynasore, for their role in inhibition of P. gingivalis invasion. Using confocal microscopy, we showed that these two compounds significantly reduced invasion of P. gingivalis and its outer membrane vesicles into human oral keratinocytes in a dose-dependent manner. The inhibitory effects of dynasore, a dynamin inhibitor, on the bacterial entry is consistent with the notion that P. gingivalis invasion is mediated by a clathrin-mediated endocytic machinery. We also observed that microtubule arrangement, but not actin, was altered in the host cells treated with Alop1 or dynasore, suggesting an involvement of microtubule in this inhibitory activity. This work provides an opportunity to develop compounds against P. gingivalis infection.
PMCID: PMC4760928  PMID: 26894834
10.  Identification and Synthesis of Quinolizidines with Anti-Influenza A Virus Activity 
ACS Medicinal Chemistry Letters  2014;5(8):942-946.
Influenza A virus infection causes a contagious respiratory illness that poses a threat to human health. However, there are limited anti-influenza A therapeutics available, which is further compounded by the emergence of drug resistant viruses. In this study, Sophora quinolizidine alkaloids were identified as a new class of anti-influenza A virus agents. Among the tested Sophora alkaloids, dihydroaloperine exhibited the most potent activity with an EC50 of 11.2 μM. The potency of the quinolizidine alkaloids was improved by approximately 5-fold with chemical modifications on the aloperine molecule. These compounds were effective against an H1N1 influenza A virus that was resistant to the two antiflu drugs oseltamivir and amantadine. The identification of the quinolizidine alkaloids as effective and novel anti-influenza A agents may aid in the development of new therapeutics.
PMCID: PMC4137370  PMID: 25147619
Influenza; influenza inhibitor; nucleoprotein
11.  Optimization of antiviral potency and lipophilicity of halogenated 2,6-diarylpyridinamines (DAPAs) as a novel class of HIV-1 NNRTIs 
ChemMedChem  2014;9(7):1546-1555.
Nineteen new halogenated diarylpyridinamine (DAPA) analogues (6a-n and 8a-e) modified on the phenoxy C-ring were synthesized and evaluated for anti-HIV activity and certain drug-like properties. Ten compounds showed high anti-HIV activity (EC50 < 10 nM). Particularly, (E)-6-(2”-bromo-4”-cyanovinyl-6“-methoxy)phenoxy-N2-(4′-cyanophenyl)pyridin-2,3-diamine (8c) displayed low nanomolar antiviral potency (3–7 nM) against wild-type and resistant viral strains with E138K or K101E mutation, associated with resistance to rilvipirine (1b). Compound 8c exhibited much lower resistance fold changes (RFC 1.1–2.1) than 1b (RFC 11.8–13.0). Compound 8c also exhibited better metabolic stability (in vitro half-life) than 1b in human liver microsomes (HLM), possessed low lipophilicity (clog D: 3.29; measured log P: 3.31), and had desirable lipophilic efficiency indices (LE > 0.3, LLE >5, LELP <10). With balanced potency and drug-like properties, 8c merits further development as an anti-HIV drug candidate.
PMCID: PMC4085996  PMID: 24895029
anti-HIV activity; antiviral agents; diarylpyridinamine; drug-like properties; lipophiliicity
12.  Functional Advantages of Porphyromonas gingivalis Vesicles 
PLoS ONE  2015;10(4):e0123448.
Porphyromonas gingivalis is a keystone pathogen of periodontitis. Outer membrane vesicles (OMVs) have been considered as both offense and defense components of this bacterium. Previous studies indicated that like their originating cells, P. gingivalis vesicles, are able to invade oral epithelial cells and gingival fibroblasts, in order to promote aggregation of some specific oral bacteria and to induce host immune responses. In the present study, we investigated the invasive efficiency of P. gingivalis OMVs and compared results with that of the originating cells. Results revealed that 70–90% of human primary oral epithelial cells, gingival fibroblasts, and human umbilical vein endothelial cells carried vesicles from P. gingivalis 33277 after being exposed to the vesicles for 1 h, while 20–50% of the host cells had internalized P. gingivalis cells. We also detected vesicle-associated DNA and RNA and a vesicle-mediated horizontal gene transfer in P. gingivalis strains, which represents a novel mechanism for gene transfer between P. gingivalis strains. Moreover, purified vesicles of P. gingivalis appear to have a negative impact on biofilm formation and the maintenance of Streptococcus gordonii. Our results suggest that vesicles are likely the best offence weapon of P. gingivalis for bacterial survival in the oral cavity and for induction of periodontitis.
PMCID: PMC4405273  PMID: 25897780
13.  Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis 
MicrobiologyOpen  2014;4(1):53-65.
Porphyromonas gingivalis is a keystone periopathogen that plays an essential role in the progress of periodontitis. Like other gram-negative bacteria, the ability of P. gingivalis to produce outer membrane vesicles is a strategy used to interact with, and survive within its biological niches. Here we compared the protein components associated with vesicles derived from a fimbriated strain (33277) and an afimbriated strain (W83) of P. gingivalis using proteomic analyses. Some well-known virulence factors were identified in vesicles from both strains, such as gingipains and hemagglutinin. In contrast, FimC, FimD, and FimE, minor components of long fimbriae were found exclusively in 33277 vesicles, while proteins with a tetratricopeptide repeat (TPR) domain were unique to W83 vesicles. We found that significantly more 33277 than W83 vesicles were internalized into human oral keratinocytes and gingival fibroblasts. Interestingly, FimA, a well-known adhesin responsible for the attachment and invasion of P. gingivalis into host cells, was not essential for the invasive capabilities of P. gingivalis vesicles. Rather minor components of long fimbriae were required for an efficient invasive activity of vesicles. The most striking finding was that P. gingivalis strains lacking or having a reduced FimA expression showed a significant reduction in vesiculation. These results suggest that production and pathogenicity of P. gingivalis vesicles may largely depend on expression of the fim locus, and that the integration of vesicle production and pathogenicity with fimbrial expression may allow P. gingivalis to confer upon itself certain functional advantages.
PMCID: PMC4335976  PMID: 25524808
Invasion; outer membrane vesicles; P. gingivalis
14.  Inhibitory Effect of b-AP15 on the 20S Proteasome 
Biomolecules  2014;4(4):931-939.
The 26S proteasome is a cellular proteolytic complex containing 19S regulatory particles and the 20S core proteasome. It was reported that the small molecule b-AP15 targets the proteasome by inhibiting deubiquitination of the 19S regulatory particles of the proteasome complex. An investigation of b-AP15 on the 20S proteasome core suggested that this compound can also inhibit the 20S proteasome with a potency equivalent to that found to inhibit the 19S regulatory particles.
PMCID: PMC4279163  PMID: 25317846
proteasome inhibitor; b-AP15; 19S regulatory particles
15.  Isolation, Structure Determination, and Anti-HIV Evaluation of Tigliane-type Diterpenes and Biflavonoid from Stellera chamaejasme 
Journal of natural products  2013;76(5):852-857.
Five novel tigliane-type diterpenes, stelleracins A–E (3–7), a novel flavanone dimer, chamaeflavone A (8), and six known compounds were isolated from roots of Stellera chamaejasme. Their structures were elucidated by extensive spectroscopic analyses. The isolated compounds were evaluated for anti-HIV activity in MT4 cells. New compounds 3–5 showed potent anti-HIV activity (EC90 0.00056–0.0068 μM) and relatively low or no cytotoxicity (IC50 4.4–17.2 μM). These new compounds represent promising new leads for development into anti-AIDS clinical trial candidates.
PMCID: PMC3715147  PMID: 23611151
16.  New Betulinic Acid Derivatives for Bevirimat-Resistant Human Immunodeficiency Virus Type-1 
Journal of medicinal chemistry  2013;56(5):2029-2037.
Bevirimat (1, BVM) is an anti-HIV agent that blocks HIV-1 replication by interfering with HIV-1 Gag-SP1 processing at a late stage of viral maturation. However, clinical trials of 1 have revealed a high baseline drug resistance that is attributed to naturally-occurring polymorphisms in HIV-1 Gag. To overcome the drug resistance, 28 new derivatives of 1 were synthesized and tested against compound 1-resistant (BVM-R) HIV-1 variants. Among them, compound 6 exhibited much improved activity against several HIV-1 strains carrying BVM-R polymorphisms. Compound 6 was at least 20-fold more potent than 1 against the replication of NL4-3/V370A, which carries the most prevalent clinical BVM-R polymorphism in HIV-1 Gag-SP1. Thus, compound 6 merits further development as a potential anti-AIDS clinical trial candidate.
PMCID: PMC3600082  PMID: 23379607
Betulinic acid; Bevirimat; HIV-1; Maturation inhibitors; Bevirimat-resistance
17.  Synthesis of Lithocholic Acid Derivatives as Proteasome Regulators 
ACS Medicinal Chemistry Letters  2012;3(11):925-930.
Accumulation of aberrant protein aggregates, such as amyloid β peptide (Aβ), due to decreased proteasome activities, might contribute to the neurodegeneration in Alzheimer's disease. In this study, lithocholic acid derivatives 3α-O-pimeloyl-lithocholic acid methyl ester (2) and its isosteric isomer (6) were found to activate the chymotrypsin-like activity of the proteasome at an EC50 of 7.8 and 4.3 μM, respectively. Replacing the C24 methyl ester in 2 with methylamide resulted in a complete devoid of proteasome activating activity. Epimerizing the C3 substituent from an α to β orientation transformed the activator into a proteasome inhibitor. Unlike the cellular proteasome activator PA28, proteasome activated by 2 was not inhibited by Aβ. Furthermore, 2 potently antagonized the inhibitory effect of Aβ on the proteasome. In summary, compound 2 represents a novel class of small molecules that not only activates the proteasome but also antagonizes the inhibitory effect of Aβ on the proteasome.
PMCID: PMC3544189  PMID: 23330053
proteasome activator; lithocholic acid; Alzheimer's disease; amyloid β
18.  Anti-AIDS Agents 90. Novel C-28 Modified Bevirimat Analogs as Potent HIV Maturation Inhibitors 
Journal of medicinal chemistry  2012;55(18):8128-8136.
In a continuing study of bevirimat (2), the anti-HIV-maturation clinical trials agent, 28 new betulinic acid (BA, 1) derivatives were designed and synthesized. Among these compounds, 17, with a C-28 MEM ester moiety, and 22, with a C-28 ethyl hexanoate, increased the anti-HIV replication activity compared with 2 by two-fold, while compounds 40–41 and 48–49, with C-28 piperazine or piperidine amide substitutions, increased the activity by three- to fifteen-fold. The best new compound 41 exhibited an anti-HIV IC50 value of 0.0059 μM, compared with 0.087 μM for 2. All of the active compounds showed only anti-maturation effects, as confirmed by TZM-bl assay, in blocking the HIV replication. The results suggest that proper C-28 substitutions can further enhance the anti-maturation activity of 2, without any anti-entry effects. Thus, 41 may serve as a promising new lead for development of anti-AIDS clinical trial candidates.
PMCID: PMC3478670  PMID: 22978745
19.  Design, Synthesis, and Preclinical Evaluations of Novel 4-Substituted 1,5-Diarylanilines as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Drug Candidates 
Journal of medicinal chemistry  2012;55(16):7219-7229.
Twenty-one new 4-substituted diarylaniline compounds (DAANs) (Scheme 2, series 13, 14, and 15) were designed, synthesized, and evaluated against wild-type and drug resistant HIV-1 viral strains. As a result, approximately a dozen new DAANs showed high potency with low nano- to sub-nanomolar EC50 values ranging from 0.2 to 10 nM. The three most promising compounds 14e, 14h, and 15h exhibited high potency against wild-type and drug-resistant viral strains with EC50 values at the sub-nanomolar level (0.29–0.87 nM), and were comparable to or more potent than the new NNRTI drug riplivirine (2) in the same assays. Drug-like physicochemical property assessments revealed that the most active DAANs (EC50 <10 nM) have better aqueous solubility (>1–90 μg/mL at pH 7.4 and pH 2) and metabolic stability in vitro than 2, as well as desirable log P values (<5) and polar surface area (PSA) (<140 Å2). These promising results warrant further development of this novel compound class as potential potent anti-AIDS clinical trial candidates.
PMCID: PMC3462592  PMID: 22856541
20.  Synthesis of Betulinic Acid Derivatives as Entry Inhibitors against HIV-1 and Bevirimat-Resistant HIV-1 Variants 
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.
PMCID: PMC3426442  PMID: 22818973
HIV-1; Entry inhibitor; Maturation inhibitor; Betulinic acid; Berivimat; Berivimat-resistance
21.  Synthesis of Lithocholic Acid Derivatives as Proteasome Regulators 
ACS medicinal chemistry letters  2012;3(11):925-930.
Accumulation of aberrant protein aggregates, such as amyloid beta peptide (Aβ), due to decreased proteasome activities might contribute to the neurodegeneration in Alzheimer's disease. In this study, lithocholic acid derivatives 3α-O-pimeloyl-lithocholic acid methyl ester (2) and its isosteric isomer (6) were found to activate the chymotrypsin-like activity of the proteasome at an EC50 of 7.8 and 4.3 μM, respectively. Replacing the C24 methyl ester in 2 with methylamide resulted in a complete devoid of proteasome activating activity. Epimerizing the C3 substituent from an alpha to beta orientation transformed the activator into a proteasome inhibitor. Unlike the cellular proteasome activator PA28, proteasome activated by 2 was not inhibited by Aβ. Furthermore, 2 potently antagonized the inhibitory effect of Aβ on the proteasome. In summary, compound 2 represents a novel class of small molecules that not only activates the proteasome but also antagonizes the inhibitory effect of Aβ on the proteasome.
PMCID: PMC3544189  PMID: 23330053
proteasome activator; lithocholic acid; Alzheimer's disease; amyloid beta
22.  In-Depth Analysis of the Interaction of HIV-1 with Cellular microRNA Biogenesis and Effector Mechanisms 
mBio  2013;4(2):e00193-13.
The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4+ peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites.
MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
PMCID: PMC3634607  PMID: 23592263
23.  Anti-AIDS agents 88. Anti-HIV conjugates of betulin and betulinic acid with AZT prepared via click chemistry 
Tetrahedron letters  2012;53(15):1987-1989.
In the present study, a new strategy to link AZT with betulin/betulinic acid (BA) by click chemistry was designed and achieved. This conjugation via a triazole linkage offers a new direction for modification of anti-HIV triterpenes. Click chemistry provides an easy and productive way for linking two molecules, even when one of them is a large natural product. Among the newly synthesized conjugates, compounds 15 and 16 showed potent anti-HIV activity with EC50 values of 0.067 and 0.10 µM, respectively, which are comparable to that of AZT (EC50: 0.10 µM) in the same assay.
PMCID: PMC3375835  PMID: 22711941
Betulin; Betulinic acid; AZT; Anti-HIV; Click chemistry
24.  Optimization of 2,4-Diarylanilines as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors 
The current optimization of 2,4-diarylaniline analogs (DAANs) on the central phenyl ring provided a series of new active DAAN derivatives 9a–9e, indicating an accessible modification approach that could improve anti-HIV potency against wild-type and resistant strains, aqueous solubility, and metabolic stability. A new compound 9e not only exhibited extremely high potency against wild-type virus (EC50 0.53 nM) and several resistant viral strains (EC50 0.36 – 3.9 nM), but also showed desirable aqueous solubility and metabolic stability, which were comparable or better than those of the anti-HIV-1 drug TMC278 (2). Thus, new compound 9e might be a potential drug candidate for further development of novel next-generation NNRTIs.
PMCID: PMC3309038  PMID: 22406117
Diarylaniline; NNRTIs; lead optimization; anti-HIV agents
25.  Anti-AIDS agents 85. Design, synthesis, and evaluation of 1R,2R-dicamphanoyl-3,3-dimethyldihydropyrano-[2,3-c]xanthen-7(1H)-one (DCX) derivatives as novel anti-HIV agents 
In this study, 1R,2R-dicamphanoyl-3,3-dimethydihydropyrano[2,3-c]xanthen-7(1H)-one (DCX) derivatives were designed and synthesized as novel anti-HIV agents against both wild-type and nonnucleoside reverse transcriptase (RT) inhibitor-resistant HIV-1 (RTMDR-1) strains. Twenty-four DCX analogs (6-29) were synthesized and evaluated against the non-drug-resistant HIV-1 NL4-3 strain, and selected analogs were also screened for their ability to inhibit the RTMDR-1 strain. Compared with the control 2-ethyl-3′,4′-di-O-(-)-camphanoyl-2′,2′-dimethyldihydropyrano[2,3-f]chromone (2-EDCP, 2), one of the best anti-HIV coumarin derivatives in our prior study, three DCX compounds (7, 12, and 22) showed better activity against both HIV strains with an EC50 range of 0.062 – 0.081 μM, and five additional compounds (8, 11, 16, 18, and 21) exhibited comparable anti-HIV potency. Six DCX analogs (7, 11-12, 18, and 21-22) also showed enhanced selectivity index (SI) values in comparison to the control. Structure-activity relationship (SAR) information suggested that the extended conjugated system of the pyranoxanthone skeleton facilitates the interaction of the small DCX molecule within the viral binding pocket, consequently leading to enhanced anti-HIV activity and selectivity. Compared to DCP compounds, DCX analogs are a more promising new class of anti-HIV agents.
PMCID: PMC3259201  PMID: 22063755
1R,2R-dicamphanoyl-3,3-dimethydihydropyrano[2,3-c]xanthen-7(1H)-one (DCX); Anti-HIV activity; Structure-activity relationship (SAR)

Results 1-25 (49)