PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia 
Background
In this paper, a physical method to prepare copper-nickel alloy particles in the sub-micron range for possible self controlled magnetic hyperthermia treatment of cancer is described. It is reported that an increase in tumor temperature decreases the tumor resistance to chemo- and radiation therapies. Self controlled heating at the tumor site to avoid spot heating is managed by controlling the Curie temperature of the magnetic particles. The process described in this paper to produce the nanomagnetic particles allows for a large scale production of these particles.
Methods
The process used here is mainly composed of melting of the Cu-Ni mixture and ball milling of the resulted bulk alloy. Both mechanical abrasion and continuous grinding were used to break down the bulk amount into the desired particle size.
Results
It was found that the desired alloy is composed of 71% nickel and 29% copper by weight. It was observed that the coarse sand-grinded powder has a Curie temperature of 345 K and the fine ball-milled powder shows a temperature of 319 K – 320 K.
Conclusion
Self regulating magnetic hyperthermia can be achieved by synthesizing nanomagnetic particles with desired Curie temperature. In this study the desired range of Curie temperatures was obtained by combination of melting and ball milling of nickel-copper alloy.
doi:10.1186/1477-044X-2-4
PMCID: PMC420488  PMID: 15132747
2.  A biocompatible magnetic film: synthesis and characterization 
Background
Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites.
Methods
A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (γ-Fe2O3, ~7 nm) have been used to produce the magnetic gel.
Results
The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior.
Conclusion
Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles.
doi:10.1186/1477-044X-2-2
PMCID: PMC373455  PMID: 14761251

Results 1-2 (2)