PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation 
Science (New York, N.Y.)  2014;343(6176):1247997.
Type II CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA–induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.
doi:10.1126/science.1247997
PMCID: PMC4184034  PMID: 24505130
2.  Low-Density Lipoprotein Receptor-Related Protein-1 Mediates Endocytic Clearance of Tissue Inhibitor of Metalloproteinases-1 and Promotes Its Cytokine-Like Activities 
PLoS ONE  2014;9(7):e103839.
Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.
doi:10.1371/journal.pone.0103839
PMCID: PMC4116228  PMID: 25075518
3.  Classification and evolution of type II CRISPR-Cas systems 
Nucleic Acids Research  2014;42(10):6091-6105.
The CRISPR-Cas systems of archaeal and bacterial adaptive immunity are classified into three types that differ by the repertoires of CRISPR-associated (cas) genes, the organization of cas operons and the structure of repeats in the CRISPR arrays. The simplest among the CRISPR-Cas systems is type II in which the endonuclease activities required for the interference with foreign deoxyribonucleic acid (DNA) are concentrated in a single multidomain protein, Cas9, and are guided by a co-processed dual-tracrRNA:crRNA molecule. This compact enzymatic machinery and readily programmable site-specific DNA targeting make type II systems top candidates for a new generation of powerful tools for genomic engineering. Here we report an updated census of CRISPR-Cas systems in bacterial and archaeal genomes. Type II systems are the rarest, missing in archaea, and represented in ∼5% of bacterial genomes, with an over-representation among pathogens and commensals. Phylogenomic analysis suggests that at least three cas genes, cas1, cas2 and cas4, and the CRISPR repeats of the type II-B system were acquired via recombination with a type I CRISPR-Cas locus. Distant homologs of Cas9 were identified among proteins encoded by diverse transposons, suggesting that type II CRISPR-Cas evolved via recombination of mobile nuclease genes with type I loci.
doi:10.1093/nar/gku241
PMCID: PMC4041416  PMID: 24728998
4.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems 
Nucleic Acids Research  2013;42(4):2577-2590.
The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.
doi:10.1093/nar/gkt1074
PMCID: PMC3936727  PMID: 24270795
5.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems 
RNA Biology  2013;10(5):726-737.
CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase III, dual-tracrRNA:crRNA guides the CRISPR-associated endonuclease Cas9 (Csn1) to cleave site-specifically cognate target DNA. Here, we screened available genomes for type II CRISPR-Cas loci by searching for Cas9 orthologs. We analyzed 75 representative loci, and for 56 of them we predicted novel tracrRNA orthologs. Our analysis demonstrates a high diversity in cas operon architecture and position of the tracrRNA gene within CRISPR-Cas loci. We observed a correlation between locus heterogeneity and Cas9 sequence diversity, resulting in the identification of various type II CRISPR-Cas subgroups. We validated the expression and co-processing of predicted tracrRNAs and pre-crRNAs by RNA sequencing in five bacterial species. This study reveals tracrRNA family as an atypical, small RNA family with no obvious conservation of structure, sequence or localization within type II CRISPR-Cas loci. The tracrRNA family is however characterized by the conserved feature to base-pair to cognate pre-crRNA repeats, an essential function for crRNA maturation and DNA silencing by dual-RNA:Cas9. The large panel of tracrRNA and Cas9 ortholog sequences should constitute a useful database to improve the design of RNA-programmable Cas9 as genome editing tool.
doi:10.4161/rna.24321
PMCID: PMC3737331  PMID: 23563642
tracrRNA; CRISPR-Cas; type II system; Cas9 (Csn1); RNA processing; RNA maturation; small non-coding RNA; bacteria; adaptive immunity; mobile genetic elements
6.  Evolution and classification of the CRISPR-Cas systems 
Nature Reviews. Microbiology  2011;9(6):467-477.
The CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR–Cas systems and Cas proteins. Three major types of CRISPR–Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR–Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a `polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR–cas loci.
doi:10.1038/nrmicro2577
PMCID: PMC3380444  PMID: 21552286
7.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III 
Nature  2011;471(7340):602-607.
CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24 nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.
doi:10.1038/nature09886
PMCID: PMC3070239  PMID: 21455174
8.  RNA techniques for bacteria 
Current opinion in microbiology  2007;10(3):254-256.
doi:10.1016/j.mib.2007.06.003
PMCID: PMC3030951  PMID: 17574902
9.  Lysogenic Transfer of Group A Streptococcus Superantigen Gene among Streptococci 
The Journal of infectious diseases  2008;197(2):225-234.
A group A Streptococcus(GAS) isolate,serotypeM12,recovered from a patient with streptococcal toxic shock syndrome was analyzed for superantigen-carrying prophages, revealing 149, which encodes superantigen SSA. Sequence analysis of the att-L proximal region of 149 showed that the phage had a mosaic nature. Remarkably, we successfully obtained lysogenic conversion of GAS clinical isolates of various M serotypes (M1, M3, M5, M12, M19, M28, and M94), as well as of group C Streptococcus equisimilis (GCSE) clinical isolates, via transfer of a recombinant phage 149::Kmr. Phage149::Kmr from selected lysogenized GAS and GCSE strains could be transferred back to M12 GAS strains. Our data indicate that horizontal transfer of lysogenic phages among GAS can occur across the M-type barrier; these data also provide further support for the hypothesis that toxigenic conversion can occur via lysogeny between species. Streptococci might employ this mechanism specifically to allow more efficient adaptation to changing host challenges, potentially leading to fitter and more virulent clones.
doi:10.1086/524687
PMCID: PMC3030952  PMID: 18179387
10.  Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells 
BMC Microbiology  2008;8:188.
Background
The luxS/AI-2 signaling pathway has been reported to interfere with important physiological and pathogenic functions in a variety of bacteria. In the present study, we investigated the functional role of the streptococcal luxS/AI-2 system in metabolism and diverse aspects of pathogenicity including the adaptation of the organism to stress conditions using two serotypes of Streptococcus pyogenes, M1 and M19.
Results
Exposing wild-type and isogenic luxS-deficient strains to sulfur-limited media suggested a limited role for luxS in streptococcal activated methyl cycle metabolism. Interestingly, loss of luxS led to an increased acid tolerance in both serotypes. Accordingly, luxS expression and AI-2 production were reduced at lower pH, thus linking the luxS/AI-2 system to stress adaptation in S. pyogenes. luxS expression and AI-2 production also decreased when cells were grown in RPMI medium supplemented with 10% serum, considered to be a host environment-mimicking medium. Furthermore, interaction analysis with epithelial cells and macrophages showed a clear advantage of the luxS-deficient mutants to be internalized and survive intracellularly in the host cells compared to the wild-type parents. In addition, our data revealed that luxS influences the expression of two virulence-associated factors, the fasX regulatory RNA and the virulence gene sibA (psp).
Conclusion
Here, we suggest that the group A streptococcal luxS/AI-2 system is not only involved in the regulation of virulence factor expression but in addition low level of luxS expression seems to provide an advantage for bacterial survival in conditions that can be encountered during infections.
doi:10.1186/1471-2180-8-188
PMCID: PMC2603038  PMID: 18973658
11.  Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9*S⃞ 
The Journal of Biological Chemistry  2008;283(29):19879-19887.
Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-κB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.
doi:10.1074/jbc.M802848200
PMCID: PMC2459277  PMID: 18480050
12.  The Dark Side of the Salad: Salmonella typhimurium Overcomes the Innate Immune Response of Arabidopsis thaliana and Shows an Endopathogenic Lifestyle 
PLoS ONE  2008;3(5):e2279.
Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracelullar cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.
doi:10.1371/journal.pone.0002279
PMCID: PMC2386236  PMID: 18509467
13.  Insertion Sequence 1515 in the ply Gene of a Type 1 Clinical Isolate of Streptococcus pneumoniae Abolishes Pneumolysin Expression▿  
Journal of Clinical Microbiology  2007;45(7):2296-2297.
A serotype 1 Streptococcus pneumoniae strain isolated by blood culture from a woman with pneumonia was found to harbor insertion sequence (IS) 1515 in the pneumolysin gene, abolishing pneumolysin expression. To our knowledge, this is the first report of an IS in the pneumolysin gene of S. pneumoniae.
doi:10.1128/JCM.02168-06
PMCID: PMC1933007  PMID: 17494718
14.  Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria 
Applied and Environmental Microbiology  2004;70(10):6076-6085.
Our understanding of staphylococcal pathogenesis depends on reliable genetic tools for gene expression analysis and tracing of bacteria. Here, we have developed and evaluated a series of novel versatile Escherichia coli-staphylococcal shuttle vectors based on PCR-generated interchangeable cassettes. Advantages of our module system include the use of (i) staphylococcal low-copy-number, high-copy-number, thermosensitive and theta replicons and selectable markers (choice of erythromycin, tetracycline, chloramphenicol, kanamycin, or spectinomycin); (ii) an E. coli replicon and selectable marker (ampicillin); and (iii) a staphylococcal phage fragment that allows high-frequency transduction and an SaPI fragment that allows site-specific integration into the Staphylococcus aureus chromosome. The staphylococcal cadmium-inducible Pcad-cadC and constitutive PblaZ promoters were designed and analyzed in transcriptional fusions to the staphylococcal β-lactamase blaZ, the Vibrio fischeri luxAB, and the Aequorea victoria green fluorescent protein reporter genes. The modular design of the vector system provides great flexibility and variety. Questions about gene dosage, complementation, and cis-trans effects can now be conveniently addressed, so that this system constitutes an effective tool for studying gene regulation of staphylococci in various ecosystems.
doi:10.1128/AEM.70.10.6076-6085.2004
PMCID: PMC522135  PMID: 15466553
15.  Plakoglobin Suppresses Epithelial Proliferation and Hair Growth in Vivo 
The Journal of Cell Biology  2000;149(2):503-520.
Plakoglobin regulates cell adhesion by providing a modulatable connection between both classical and desmosomal cadherins and their respective cytoskeletal linker proteins. Both plakoglobin and the related protein β-catenin are posttranscriptionally upregulated in response to Wnt-1 in cultured cells. Upregulation of β-catenin has been implicated in potentiating hyperproliferation and tumor formation. To investigate the role of plakoglobin in these functions we expressed a full-length (PG) and an NH2-terminally truncated form of plakoglobin (ΔN80PG) in mouse epidermis and hair follicles, tissues which undergo continuous and easily observed postnatal renewal and remodeling. Expression of these constructs results in stunted hair growth, a phenotype that has also been observed in transgenic mice expressing Wnt3 and Dvl2 (Millar et al. 1999). Hair follicles from PG and ΔN80PG mice show premature termination of the growth phase (anagen) of the hair cycle, an event that is regulated in part by FGF5 (Hebert et al. 1994). The proliferative rate of the epidermal cells was reduced and apoptotic changes, which are associated with entry into the regressive phase of the hair follicle cycle (catagen), occurred earlier than usual.
PMCID: PMC2175163  PMID: 10769039
plakoglobin; β-catenin; Wnt; cadherin; proliferation
18.  Conjugative Mobilization of the Rolling-Circle Plasmid pIP823 from Listeria monocytogenes BM4293 among Gram-Positive and Gram-Negative Bacteria 
Journal of Bacteriology  1999;181(11):3368-3374.
We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated.
PMCID: PMC93802  PMID: 10348847
19.  Identification of a Streptococcus pneumoniae Gene Locus Encoding Proteins of an ABC Phosphate Transporter and a Two-Component Regulatory System 
Journal of Bacteriology  1999;181(4):1126-1133.
The Escherichia coli Pst system belongs to the family of ABC transporters. It is part of a phosphate (PHO) regulon which is regulated by extracellular phosphate. Under conditions of phosphate limitation, the response regulator PhoB is phosphorylated by the histidine kinase PhoR and binds to promoters that share a consensus PHO box. Under conditions of phosphate excess, PhoR, Pst, and PhoU downregulate the PHO regulon. Screening of a library of pneumococcal mutants with defects in exported proteins revealed a putative two-component regulatory system, PnpR-PnpS, and a downstream ABC transporter, similar to the Pst system in E. coli including a gene encoding a PhoU protein. Similar to E. coli, mutagenesis of the ATP-binding cassette gene, pstB, resulted in decreased uptake of phosphate. The effects of the loss of the pneumococcal Pst system extended to decreased transformation and lysis. Withdrawal of phosphate led to transformation deficiency in the parent strain R6x but not to penicillin tolerance, suggesting that reduced bacterial death was independent of phosphate. None of these phenotypes was observed in the pneumococcal loss-of-function mutant phoU. By using a lacZ reporter construct, it was demonstrated that expression of the two-component regulatory system PnpR-PnpS was not influenced by different concentrations of phosphate. These results suggest a more complex role of the Pst system in pneumococcal physiology than in that of E. coli.
PMCID: PMC93488  PMID: 9973337

Results 1-19 (19)