PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations 
Journal of virological methods  2010;168(0):114-120.
To compare standard PCR/cloning and single genome sequencing (SGS) in their ability to reflect actual intra-patient polymorphism of HIV-1 populations, a total of 530 HIV-1 pro-pol sequences obtained by both sequencing techniques from a set of 17 ART naïve patient specimens was analyzed. For each specimen, 12 and 15 sequences, on average, were characterized by the two techniques. Using phylogenetic analysis, tests for panmixia and entropy, and Bland-Altman plots, no difference in population structure or genetic diversity was shown in 14 of the 17 subjects. Evidence of sampling bias by the presence of subsets of identical sequences was found by either method. Overall, the study shows that neither method was more biased than the other, and providing that an adequate number of PCR templates is analyzed, and that the bulk sequencing captures the diversity of the viral population, either method is likely to provide a similar measure of population diversity.
doi:10.1016/j.jviromet.2010.04.030
PMCID: PMC3949620  PMID: 20451557
HIV; Single genome sequencing (SGS); pro-pol diversity; cloning and sequencing; treatment naïve
2.  Safety, Tolerability, and Pharmacokinetics of Intravenous Oseltamivir: Single- and Multiple-Dose Phase I Studies with Healthy Volunteers 
There is an unmet need for an intravenous (i.v.) neuraminidase inhibitor, particularly for patients with severe influenza who cannot take oral medication. Two phase I pharmacokinetic and safety studies of i.v. oseltamivir were carried out in healthy volunteers. The first was an open-label, randomized, four-period, two-sequence, single-dose trial of 100 mg, 200 mg, and 400 mg oseltamivir i.v. over 2 h and a 75-mg oral dose of oseltamivir. The second was a double-blind, placebo-controlled, parallel-group, multiple-dose study in which participants were randomized to 100 mg or 200 mg oseltamivir or placebo (normal saline) i.v. over 2 h every 12 h for 5 days. Exposure to the active metabolite oseltamivir carboxylate (OC) after dosing achieved with 100 mg oseltamivir administered i.v. over 2 h was comparable to that achieved with 75 mg administered orally. Single i.v. doses of oseltamivir up to 400 mg were well tolerated with no new safety signals. Multiple-dose data confirmed good tolerability of 100 mg and 200 mg oseltamivir and showed efficacious OC exposures with 100 mg i.v. over 2 h twice daily for 5 days. These results support further exploration of i.v. oseltamivir as an influenza treatment option for patients unable to take oral medication.
doi:10.1128/AAC.00200-12
PMCID: PMC3421873  PMID: 22733065
3.  Differences in Reversion of Resistance Mutations to Wild-Type under Structured Treatment Interruption and Related Increase in Replication Capacity 
PLoS ONE  2011;6(1):e14638.
Background
The CPCRA 064 study examined the effect of structured treatment interruption (STI) of up to 4 months followed by salvage treatment in patients failing therapy with multi-drug resistant HIV. We examined the relationship between the reversion rate of major reverse transcriptase (RT) resistance-associated mutations and change in viral replication capacity (RC). The dataset included 90 patients with RC and genotypic data from virus samples collected at 0 (baseline), 2 and 4 months of STI.
Principal Findings
Rapid shift towards wild-type RC was observed during the first 2 months of STI. Median RC increased from 47.5% at baseline to 86.0% at 2 months and to 97.5% at 4 months. Between baseline and 2 months of STI, T215F had the fastest rate of reversion (41%) and the reversion of E44D and T69D was associated with the largest changes in RC. Among the most prevalent RT mutations, M184V had the fastest rate of reversion from baseline to 2 months (40%), and its reversion was associated with the largest increase in RC. Most rates of reversion increased between 2 months and 4 months, but the change in RC was more limited as it was already close to 100%. The highest frequency of concurrent reversion was found for L100I and K103N. Mutagenesis tree models showed that M184V, when present, was overall the first mutation to revert among all the RT mutations reported in the study.
Conclusion
Longitudinal analysis of combined phenotypic and genotypic data during STI showed a large amount of variability in prevalence and reversion rates to wild-type codons among the RT resistance-associated mutations. The rate of reversion of these mutations may depend on the extent of RC increase as well as the co-occurring reversion of other mutations belonging to the same mutational pathway.
doi:10.1371/journal.pone.0014638
PMCID: PMC3031504  PMID: 21297946
4.  Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance▿ § 
Journal of Virology  2009;83(21):11027-11042.
Drug resistance is an important cause of antiretroviral therapy failure in human immunodeficiency virus (HIV)-infected patients. Mutations in the protease render the virus resistant to protease inhibitors (PIs). Gag cleavage sites also mutate, sometimes correlating with resistance mutations in the protease, but their contribution to resistance has not been systematically analyzed. The present study examines mutations in Gag cleavage sites that associate with protease mutations and the impact of these associations on drug susceptibilities. Significant associations were observed between mutations in the nucleocapsid-p1 (NC-p1) and p1-p6 cleavage sites and various PI resistance-associated mutations in the protease. Several patterns were frequently observed, including mutations in the NC-p1 cleavage site in combination with I50L, V82A, and I84V within the protease and mutations within the p1-p6 cleavage site in combination with D30N, I50V, and I84V within the protease. For most patterns, viruses with mutations both in the protease and in either cleavage site were significantly less susceptible to specific PIs than viruses with mutations in the protease alone. Altered PI resistance in HIV-1 was found to be associated with the presence of Gag cleavage site mutations. These studies suggest that associated cleavage site mutations may contribute to PI susceptibility in highly specific ways depending on the particular combinations of mutations and inhibitors. Thus, cleavage site mutations should be considered when assessing the level of PI resistance.
doi:10.1128/JVI.00628-09
PMCID: PMC2772784  PMID: 19706699
5.  An Evolutionary Model-Based Algorithm for Accurate Phylogenetic Breakpoint Mapping and Subtype Prediction in HIV-1 
PLoS Computational Biology  2009;5(11):e1000581.
Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1) are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial) sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL) procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol) sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (≈5%) fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance of accurate, robust and extensible subtyping procedures is clear.
Author Summary
There are nine different subtypes of the main group of HIV-1, each originating as a distinct subepidemic of HIV-1. The distribution of subtypes is often unique to a given geographic region of the world and constitutes a useful epidemiological and surveillance resource. The effects of viral subtype on disease progression, treatment outcome and vaccine design are being actively researched, and the importance of accurate subtyping procedures is clear. In HIV-1, subtype assignment is complicated by frequent recombination among co-circulating strains, creating new genetic mosaics or recombinant forms: 43 have been characterized to date, and many more likely exist. We present an automated phylogenetic method (SCUEAL) to accurately characterize both simple and complex HIV-1 mosaics. Using computer simulations and biological data we demonstrate that SCUEAL performs very well under various conditions, especially when some of the existing classification procedures fail. Furthermore, we show that a small, but noticeable proportion of subtype characterization stored in public databases may be incomplete or incorrect. The computational technique introduced here should provide a much more accurate characterization of HIV-1 strains, especially novel recombinants, and lead to new insights into molecular history, epidemiology and geographical distribution of the virus.
doi:10.1371/journal.pcbi.1000581
PMCID: PMC2776870  PMID: 19956739
6.  Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda 
AIDS (London, England)  2009;27(7):845-852.
Objective
To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment.
Methods
Samples obtained at the time of HIV seroconversion (1998–2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA).
Results
Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hyper-susceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase.
Conclusion
Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection.
doi:10.1097/QAD.0b013e328327957a
PMCID: PMC2676205  PMID: 19276794
antiretroviral drug; hypersusceptibility; phenotype; resistance; subtype; Uganda
7.  Development and Characterization of a Novel Single-Cycle Recombinant-Virus Assay To Determine Human Immunodeficiency Virus Type 1 Coreceptor Tropism▿  
Most human immunodeficiency virus type 1 (HIV-1) strains require either the CXCR4 or CCR5 chemokine receptor to efficiently enter cells. Blocking viral binding to these coreceptors is an attractive therapeutic target. Currently, several coreceptor antagonists are being evaluated in clinical trials that require characterization of coreceptor tropism for enrollment. In this report, we describe the development of an automated and accurate procedure for determining HIV-1 coreceptor tropism (Trofile) and its validation for routine laboratory testing. HIV-1 pseudoviruses are generated using full-length env genes derived from patient virus populations. Coreceptor tropism is determined by measuring the abilities of these pseudovirus populations to efficiently infect CD4+/U87 cells expressing either the CXCR4 or CCR5 coreceptor. Viruses exclusively and efficiently infecting CXCR4+/CD4+/U87 cells are designated X4-tropic. Conversely, viruses exclusively and efficiently infecting CCR5+/CD4+/U87 cells are designated R5-tropic. Viruses capable of infecting both CXCR4+/CD4+/U87 and CCR5+/CD4+/U87 cells are designated dual/mixed-tropic. Assay accuracy and reproducibility were established by evaluating the tropisms of well-characterized viruses and the variability among replicate results from samples tested repeatedly. The viral subtype, hepatitis B virus or hepatitis C virus coinfection, and the plasma viral load did not affect assay performance. Minority subpopulations with alternate tropisms were reliably detected when present at 5 to 10%. The plasma viral load above which samples can be amplified efficiently in the Trofile assay is 1,000 copies per ml of plasma. Trofile has been automated for high-throughput use; it can be used to identify patients most likely to benefit from treatment regimens that include a coreceptor inhibitor and to monitor patients on treatment for the emergence of resistant virus populations that switch coreceptor tropism.
doi:10.1128/AAC.00853-06
PMCID: PMC1797738  PMID: 17116663
8.  A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism 
PLoS Medicine  2007;4(1):e36.
Background
HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors.
Methods and Findings
We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with virological failure during PI therapy.
Conclusions
HIV can use an alternative mechanism to become resistant to PI by changing the substrate instead of the protease. Further studies are required to determine to what extent cleavage site mutations may explain virological failure during PI therapy.
Changes in the cleavage site of the Gag substrate for the HIV protease can convey resistance to protease inhibitors and might contribute to virologic failure during therapy that includes these drugs.
Editors' Summary
Background.
Twenty-five years ago, infection with the human immunodeficiency virus (HIV)—the causative agent of AIDS—was a death sentence. However, drugs that attack various stages of the HIV life cycle were soon developed that, although not curing the infection, kept it in check when used in combination and greatly increased the life expectancy of people infected with HIV. Unfortunately, viruses resistant to these drugs have rapidly emerged and antiviral therapy now fails in many patients. The use of HIV protease inhibitors (PIs) in combination therapies, for example, has led to the stepwise selection of viral variants resistant to these drugs. Resistance is first acquired when the viral protease changes so that PIs no longer bind to it and inhibit it efficiently. These changes often reduce the efficiency with which the protease binds its substrates—polyproteins called Gag and GagPol that it chops up into smaller proteins to make new viral particles. So the next step is the accumulation of changes elsewhere in the protease that make it work better, and sometimes changes in its substrate that make it easier to cut; these compensatory changes do not directly affect viral resistance to PIs.
Why Was This Study Done?
To prevent viruses with resistance to PIs emerging, drug doses are kept high in patients and new PIs are being developed with high potency against known PI-resistant HIV variants. Both approaches set a “high genetic barrier” to the development of PI resistance by ensuring that HIV has to incorporate many changes in its protease to become resistant. But, the HIV genome naturally changes—mutates—very rapidly, so novel HIV variants could emerge that are less susceptible to the new potent PIs without the virus having to leap this high genetic barrier. In this study, the researchers have investigated whether HIV can find an alternative route to PI resistance that does not involve the introduction of multiple changes into its protease.
What Did the Researchers Do and Find?
The researchers took wild-type HIV and treated it in the laboratory with a new PI regimen that has a high genetic barrier. By gradually increasing its concentration, the researchers selected three viral populations that were able to grow in 4- to 8-fold higher concentrations of the PI than wild-type virus. None of these populations had mutations in the viral protease. Instead, they all had mutations near one of the sites—the NC/p1 site—where the protease normally cuts the Gag polyprotein. These mutations, the researchers report, enhanced the overall efficiency with which the wild-type protease cleaved the polyprotein, and a selection experiment with another PI showed that the development of PI resistance through alterations near the NC/p1 cleavage site was not unique to one PI. The researchers also investigated the potential clinical significance of this new drug resistance mechanism by looking for the same mutations in nearly 30,000 patient samples. Many of the samples did indeed have these mutations. Finally, they showed that mutations at the NC/p1 cleavage site were associated with virological failure (increased viral replication) during PI therapy in an ongoing clinical trial.
What Do These Findings Mean?
These results suggest that increased polyprotein processing because of mutations in the natural substrate of the HIV protease might be a new mechanism by which HIV can become resistant to PIs. This strategy, which occurs in the laboratory and in patients, allows HIV to develop PI resistance without the need for multiple changes in its protease and so avoids the high genetic barrier to resistance that new PIs provide. Clinical studies are now needed to test which of the mutations seen in this study contribute to virological failure, whether the degree of this failure is clinically relevant, and whether these substrate mutations enhance the effect of protease mutations. If the clinical importance of the new mechanism is confirmed, genetic examination of both the polyprotein and the protease will be needed when trying to figure out why a PI-containing therapy is failing in individual patients. Furthermore, it will be necessary to test whether this mechanism can contribute to the development of resistance when evaluating new drugs.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040036.
US National Institute of Allergy and Infectious Diseases factsheet on HIV infection and AIDS
US Department of Health and Human Services information on AIDS
US Centers for Disease Control and Prevention information on HIV/AIDS
Aidsmap information on HIV and AIDS provided by the charity NAM
BioAfrica, Bioinformatics for HIV Research, information on HIV-1 protease cleavage sites
doi:10.1371/journal.pmed.0040036
PMCID: PMC1769415  PMID: 17227139
9.  Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus 
The predictability of virus–host interactions and disease progression in rapidly evolving human viral infections has been difficult to assess because of host and genetic viral diversity. Here we examined adaptive HIV-specific cellular and humoral immune responses and viral evolution in adult monozygotic twins simultaneously infected with the same virus. CD4 T cell counts and viral loads followed similar trajectories over three years of follow up. The initial CD8 T cell response targeted 17 epitopes, 15 of which were identical in each twin, including two immunodominant responses. By 36 months after infection, 14 of 15 initial responses were still detectable in both, whereas all new responses were subdominant and remained so. Of four responses that declined in both twins, three demonstrated mutations at the same residue. In addition, the evolving antibody responses cross-neutralized the other twin's virus, with similar changes in the pattern of evolution in the envelope gene. These results reveal considerable concordance of adaptive cellular and humoral immune responses and HIV evolution in the same genetic environment, suggesting constraints on mutational pathways to HIV immune escape.
doi:10.1084/jem.20052116
PMCID: PMC2118231  PMID: 16533886
10.  The K101P and K103R/V179D Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confer Resistance to Nonnucleoside Reverse Transcriptase Inhibitors 
Genotypic patterns associated with nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in the absence of well-characterized resistance mutations were identified using a database (n > 47,000) of phenotype-genotype data. Among samples with no known NNRTI mutations, the most resistant samples contained K101P (n = 35) or a combination of K103R and V179D (n = 41). Site-directed mutagenesis confirmed the importance of these mutations.
doi:10.1128/AAC.50.1.351-354.2006
PMCID: PMC1346823  PMID: 16377709
11.  Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Variation and Neutralizing Antibody Responses during Transmission of HIV-1 Subtype B 
Journal of Virology  2005;79(10):6523-6527.
We analyzed neutralization sensitivity and genetic variation of transmitted subtype B human immunodeficiency virus type 1 (HIV-1) in eight recently infected men who have sex with men and the virus from the six subjects who infected them. In contrast to reports of heterosexual transmission of subtype C HIV-1, in which the transmitted virus appears to be more neutralization sensitive, we demonstrate that in our study population, relatively few phenotypic changes in neutralization sensitivity or genotypic changes in envelope occurred during transmission of subtype B HIV-1. We suggest that limited genetic variation within the infecting host reduces the likelihood of selective transmission of neutralization-sensitive HIV.
doi:10.1128/JVI.79.10.6523-6527.2005
PMCID: PMC1091710  PMID: 15858036
12.  Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies 
Journal of Virology  2004;78(23):13232-13252.
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV+ plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (≤7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV+ plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.
doi:10.1128/JVI.78.23.13232-13252.2004
PMCID: PMC524984  PMID: 15542675
13.  A web-based genotyping resource for viral sequences 
Nucleic Acids Research  2004;32(Web Server issue):W654-W659.
The Genotyping tool at the National Center for Biotechnology Information is a web-based program that identifies the genotype (or subtype) of recombinant or non-recombinant viral nucleotide sequences. It works by using BLAST to compare a query sequence to a set of reference sequences for known genotypes. Predefined reference genotypes exist for three major viral pathogens: human immunodeficiency virus 1 (HIV-1), hepatitis C virus (HCV) and hepatitis B virus (HBV). User-defined reference sequences can be used at the same time. The query sequence is broken into segments for comparison to the reference so that the mosaic organization of recombinant sequences could be revealed. The results are displayed graphically using color-coded genotypes. Therefore, the genotype(s) of any portion of the query can quickly be determined. The Genotyping tool can be found at: http://www.ncbi.nih.gov/projects/genotyping/formpage.cgi.
doi:10.1093/nar/gkh419
PMCID: PMC441557  PMID: 15215470
14.  Database resources of the National Center for Biotechnology Information 
Nucleic Acids Research  2000;28(1):10-14.
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval and resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing pages, GeneMap’99, Davis Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP) pages, Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP) pages, SAGEmap, Online Mendelian Inheritance in Man (OMIM) and the Molecular Modeling Database (MMDB). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov
PMCID: PMC102437  PMID: 10592169
15.  Simian T-Cell Lymphotropic Virus Type 1 from Mandrillus sphinx as a Simian Counterpart of Human T-Cell Lymphotropic Virus Type 1 Subtype D 
Journal of Virology  1998;72(12):10316-10322.
A recent serological and molecular survey of a semifree-ranging colony of mandrills (Mandrillus sphinx) living in Gabon, central Africa, indicated that 6 of 102 animals, all males, were infected with simian T-cell lymphotropic virus type 1 (STLV-1). These animals naturally live in the same forest area as do human inhabitants (mostly Pygmies) who are infected by the recently described human T-cell lymphotropic virus type 1 (HTLV-1) subtype D. We therefore investigated whether these mandrills were infected with an STLV-1 related to HTLV-1 subtype D. Nucleotide and/or amino acid sequence analyses of complete or partial long terminal repeat (LTR), env, and rex regions showed that HTLV-1 subtype D-specific mutations were found in three of four STLV-1-infected mandrills, while the remaining monkey was infected by a different STLV-1 subtype. Phylogenetic studies conducted on the LTR as well as on the env gp21 region showed that these three new STLV-1 strains from mandrills fall in the same monophyletic clade, supported by high bootstrap values, as do the sequences of HTLV-1 subtype D. These data show, for the first time, the presence of the same subtype of primate T-cell lymphotropic virus type 1 in humans and wild-caught monkeys originating from the same geographical area. This strongly supports the hypothesis that mandrills are the natural reservoir of HTLV-1 subtype D, although the possibility that another monkey species living in the same area could be the original reservoir of both human and mandrill viruses cannot be excluded. Due to the quasi-identity of both human and monkey viruses, interspecies transmission episodes leading to such a clade may have occurred recently.
PMCID: PMC110621  PMID: 9811783
16.  Maintenance of an Intact Human Immunodeficiency Virus Type 1 vpr Gene following Mother-to-Infant Transmission 
Journal of Virology  1998;72(8):6937-6943.
The vpr sequences from six human immunodeficiency virus type 1 (HIV-1)-infected mother-infant pairs following perinatal transmission were analyzed. We found that 153 of the 166 clones analyzed from uncultured peripheral blood mononuclear cell DNA samples showed a 92.17% frequency of intact vpr open reading frames. There was a low degree of heterogeneity of vpr genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vpr sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Moreover, the infants’ sequences displayed patterns similar to those seen in their mothers. The functional domains essential for Vpr activity, including virion incorporation, nuclear import, and cell cycle arrest and differentiation were highly conserved in most of the sequences. Phylogenetic analyses of 166 mother-infant pairs and 195 other available vpr sequences from HIV databases formed distinct clusters for each mother-infant pair and for other vpr sequences and grouped the six mother-infant pairs’ sequences with subtype B sequences. A high degree of conservation of intact and functional vpr supports the notion that vpr plays an important role in HIV-1 infection and replication in mother-infant isolates that are involved in perinatal transmission.
PMCID: PMC109910  PMID: 9658150
17.  Conservation of an Intact vif Gene of Human Immunodeficiency Virus Type 1 during Maternal-Fetal Transmission 
Journal of Virology  1998;72(2):1092-1102.
The human immunodeficiency virus type 1 (HIV-1) vif gene is conserved among most lentiviruses, suggesting that vif is important for natural infection. To determine whether an intact vif gene is positively selected during mother-to-infant transmission, we analyzed vif sequences from five infected mother-infant pairs following perinatal transmission. The coding potential of the vif open reading frame directly derived from uncultured peripheral blood mononuclear cell DNA was maintained in most of the 78,912 bp sequenced. We found that 123 of the 137 clones analyzed showed an 89.8% frequency of intact vif open reading frames. There was a low degree of heterogeneity of vif genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vif sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Furthermore, the epidemiologically linked mother-infant pair vif sequences displayed similar patterns that were not seen in vif sequences from epidemiologically unlinked individuals. The functional domains, including the two cysteines at positions 114 and 133, a serine phosphorylation site at position 144, and the C-terminal basic amino acids essential for vif protein function, were highly conserved in most of the sequences. Phylogenetic analyses of 137 mother-infant pair vif sequences and 187 other available vif sequences from HIV-1 databases revealed distinct clusters for vif sequences from each mother-infant pair and for other vif sequences. Taken together, these findings suggest that vif plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants.
PMCID: PMC124582  PMID: 9445004

Results 1-17 (17)