PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (33)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Role of Actin-Bundling Protein Sac6 in Growth of Cryptococcus neoformans at Low Oxygen Concentration 
Eukaryotic Cell  2012;11(7):943-951.
Cryptococcus neoformans, the etiologic agent of cryptococcosis, is an obligately aerobic yeast that inhabits an environmental niche exposed to ambient air. The cell doubling time was significantly prolonged under 1% O2 relative to that under normoxic conditions. No apparent cell cycle arrest occurred following a shift from ambient air to 1% O2. However, yeast cells became hypersensitive to the actin monomer-sequestering agent latrunculin A at 1% O2, indicating that proper actin function is critical for growth at low oxygen concentrations. We showed that Sac6, an actin-binding protein, played an important role in cell growth under low oxygen conditions. Sac6 colocalized with cortical actin patches and with the ring structures between mother cells and buds. Under low oxygen conditions, the sac6 deletion mutant grew poorly, and accumulation of the actin capping protein Cap1 was observed in the vacuole of the sac6Δ strain. Furthermore, endocytic processes were hampered in the sac6Δ mutant, but cell polarity and cytokinesis were not visibly disturbed. The deficiency of endocytosis in the sac6Δ strain could be rescued by 1 M sorbitol under 1% O2, but growth remained retarded. These results suggest an absence of a direct link in C. neoformans between endocytosis and coping with the stress of low oxygen conditions. This interpretation is further supported by the observation that deletion of three conserved genes, ABP1, CRN1, and SLA2, which play important roles in endocytosis, had no effect on growth under 1% O2. Interestingly, deletion of SAC6 in C. neoformans had no effect on virulence in mice.
doi:10.1128/EC.00120-12
PMCID: PMC3416496  PMID: 22562467
2.  Cryptococcus neoformans-Derived Microvesicles Enhance the Pathogenesis of Fungal Brain Infection 
PLoS ONE  2012;7(11):e48570.
Cryptococcal meningoencephalitis is the most common fungal disease in the central nervous system. The mechanisms by which Cryptococcus neoformans invades the brain are largely unknown. In this study, we found that C. neoformans-derived microvesicles (CnMVs) can enhance the traversal of the blood-brain barrier (BBB) by C. neoformans in vitro. The immunofluorescence imaging demonstrates that CnMVs can fuse with human brain microvascular endothelial cells (HBMECs), the constituents of the BBB. This activity is presumably due to the ability of the CnMVs to activate HBMEC membrane rafts and induce cell fusogenic activity. CnMVs also enhanced C. neoformans infection of the brain, found in both infected brains and cerebrospinal fluid. In infected mouse brains, CnMVs are distributed inside and around C. neoformans-induced cystic lesions. GFAP (glial fibrillary acidic protein)-positive astrocytes were found surrounding the cystic lesions, overlapping with the 14-3-3-GFP (14-3-3-green fluorescence protein fusion) signals. Substantial changes could be observed in areas that have a high density of CnMV staining. This is the first demonstration that C. neoformans-derived microvesicles can facilitate cryptococcal traversal across the BBB and accumulate at lesion sites of C. neoformans-infected brains. Results of this study suggested that CnMVs play an important role in the pathogenesis of cryptococcal meningoencephalitis.
doi:10.1371/journal.pone.0048570
PMCID: PMC3492498  PMID: 23144903
3.  Differences between Cryptococcus neoformans and Cryptococcus gattii in the Molecular Mechanisms Governing Utilization of D-Amino Acids as the Sole Nitrogen Source 
PLoS ONE  2015;10(7):e0131865.
The ability to grow on media containing certain D-amino acids as a sole nitrogen source is widely utilized to differentiate Cryptococcus gattii from C. neoformans. We used the C. neoformans H99 and C. gattii R265 strains to dissect the mechanisms of D-amino acids utilization. We identified three putative D-amino acid oxidase (DAO) genes in both strains and showed that each DAO gene plays different roles in D-amino acid utilization in each strain. Deletion of DAO2 retarded growth of R265 on eleven D-amino acids suggesting its prominent role on D-amino acid assimilation in R265. All three R265 DAO genes contributed to growth on D-Asn and D-Asp. DAO3 was required for growth and detoxification of D-Glu by both R265 and H99. Although growth of H99 on most D-amino acids was poor, deletion of DAO1 or DAO3 further exacerbated it on four D-amino acids. Overexpression of DAO2 or DAO3 enabled H99 to grow robustly on several D-amino acids suggesting that expression levels of the native DAO genes in H99 were insufficient for growth on D-amino acids. Replacing the H99 DAO2 gene with a single copy of the R265 DAO2 gene also enabled its utilization of several D-amino acids. Results of gene and promoter swaps of the DAO2 genes suggested that enzymatic activity of Dao2 in H99 might be lower compared to the R265 strain. A reduction in virulence was only observed when all DAO genes were deleted in R265 but not in H99 indicating a pathobiologically exclusive role of the DAO genes in R265. These results suggest that C. neoformans and C. gattii divergently evolved in D-amino acid utilization influenced by their major ecological niches.
doi:10.1371/journal.pone.0131865
PMCID: PMC4489021  PMID: 26132227
4.  Genetic Analysis Using an Isogenic Mating Pair of Aspergillus fumigatus Identifies Azole Resistance Genes and Lack of MAT Locus’s Role in Virulence 
PLoS Pathogens  2015;11(4):e1004834.
Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.
Author Summary
Invasive aspergillosis (IA) caused by Aspergillus fumigatus is increasing due to medical interventions that suppress the ability of patients’ immune systems to control infections. These invasive lung infections are difficult to diagnose and consequently treatment is frequently not started promptly. Some controversy surrounds the role of mating type in virulence of A. fumigatus and the emergence of azole resistant strains has posed difficult challenges for clinical management of IA. We generated nearly identical A. fumigatus strains with opposite mating types that allowed us to test whether different mating types have different virulence profiles. We found no difference in virulence in three different animal models, which suggests that mating type does not influence virulence. We also took advantage of the essentially identical genomes of both strains to apply classical genetic approaches combined with genomics technologies to identify A. fumigatus genes that contribute to azole resistance. We performed genetic crosses of azole sensitive with azole resistant strains and analyzed the resistance status and genome composition of the offspring. Using this approach we cataloged several genes that were not previously associated with azole resistance. This information will be valuable for finding ways to manage azole resistance in IA patients.
doi:10.1371/journal.ppat.1004834
PMCID: PMC4409388  PMID: 25909486
5.  Molecular Mechanisms of Hypoxic Responses via Unique Roles of Ras1, Cdc24 and Ptp3 in a Human Fungal Pathogen Cryptococcus neoformans 
PLoS Genetics  2014;10(4):e1004292.
Cryptococcus neoformans encounters a low oxygen environment when it enters the human host. Here, we show that the conserved Ras1 (a small GTPase) and Cdc24 (the guanine nucleotide exchange factor for Cdc42) play an essential role in cryptococcal growth in hypoxia. Suppressor studies indicate that PTP3 functions epistatically downstream of both RAS1 and CDC24 in regulating hypoxic growth. Ptp3 shares sequence similarity to the family of phosphotyrosine-specific protein phosphatases and the ptp3Δ strain failed to grow in 1% O2. We demonstrate that RAS1, CDC24 and PTP3 function in parallel to regulate thermal tolerance but RAS1 and CDC24 function linearly in regulating hypoxic growth while CDC24 and PTP3 reside in compensatory pathways. The ras1Δ and cdc24Δ strains ceased to grow at 1% O2 and became enlarged but viable single cells. Actin polarization in these cells, however, was normal for up to eight hours after transferring to hypoxic conditions. Double deletions of the genes encoding Rho GTPase Cdc42 and Cdc420, but not of the genes encoding Rac1 and Rac2, caused a slight growth retardation in hypoxia. Furthermore, growth in hypoxia was not affected by the deletion of several central genes functioning in the pathways of cAMP, Hog1, or the two-component like phosphorylation system that are critical in the cryptococcal response to osmotic and genotoxic stresses. Interestingly, although deletion of HOG1 rescued the hypoxic growth defect of ras1Δ, cdc24Δ, and ptp3Δ, Hog1 was not hyperphosphorylated in these three mutants in hypoxic conditions. RNA sequencing analysis indicated that RAS1, CDC24 and PTP3 acted upon the expression of genes involved in ergosterol biosynthesis, chromosome organization, RNA processing and protein translation. Moreover, growth of the wild-type strain under low oxygen conditions was affected by sub-inhibitory concentrations of the compounds that inhibit these biological processes, demonstrating the importance of these biological processes in the cryptococcal hypoxia response.
Author Summary
When Cryptococcus neoformans, an environmental fungal pathogen, enters the human host, it encounters a low oxygen condition. The well conserved Ras1 and Cdc24 proteins are known for their key roles in maintenance of the actin cytoskeletal integrity in eukaryotic cells. In this work, we show a unique role of RAS1 and CDC24 in the growth of C. neoformans in a low oxygen environment. Actin polarization, however, appeared normal in the ras1Δ and cdc24Δ strains under hypoxic conditions for up to eight hours. We show that PTP3 is required for hypoxic growth and it can rescue the hypoxic growth defect in ras1Δ and cdc24Δ. Genetic analysis suggested that RAS1 and CDC24 function linearly while CDC24 and PTP3 function parallelly in regulating hypoxic growth. RNA sequencing combined with analysis by small molecular inhibitors revealed that RAS1, CDC24 and PTP3 regulate several biological processes such as ergosterol biosynthesis, chromosome organization, RNA processing and protein translation which are required in the cryptococcal response to hypoxic conditions.
doi:10.1371/journal.pgen.1004292
PMCID: PMC3998916  PMID: 24762475
6.  Azole Heteroresistance in Cryptococcus neoformans: Emergence of Resistant Clones with Chromosomal Disomy in the Mouse Brain during Fluconazole Treatment 
Antimicrobial Agents and Chemotherapy  2013;57(10):5127-5130.
We have previously reported that Cryptococcus neoformans strains are innately heteroresistant to fluconazole in vitro, producing minor, highly resistant subpopulations due to adaptive formation of disomic chromosomes. Using a mouse model, we assessed the emergence of heteroresistant clones in the brain during fluconazole treatment and found that the occurrence of heteroresistant clones in vivo with chromosomal disomy is strain dependent. Interestingly, emergence of heteroresistant clones in vivo was unrelated to the strain's MIC to fluconazole.
doi:10.1128/AAC.00694-13
PMCID: PMC3811407  PMID: 23836187
7.  Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans 
mBio  2013;4(3):e00220-13.
ABSTRACT
Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni2+ into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria.
IMPORTANCE
Cryptococcus neoformans is the major fungal agent of meningoencephalitis in humans. Although urease is an important factor for cryptococcal brain invasion, the enzyme activation system has not been studied. We show that urease is a nickel-requiring enzyme whose activity level is influenced by the type of available nitrogen source. C. neoformans contains all the bacterial urease accessory protein homologs and nickel transporters except UreE, a nickel chaperone. Cryptococcal Ure7 (a homolog of UreG) apparently functions as both the bacterial UreG and UreE in activating the Ure1 apoenzyme. The cryptococcal urease accessory proteins Ure4, Ure6, and Ure7 interacted with Ure1 in a yeast two-hybrid assay, and deletion of any one of these not only inactivated the enzyme but also reduced the efficacy of brain invasion. This is the first study showing a holistic picture of urease in fungi, clarifying that urease activity, and not Ure1 protein, contributes to pathogenesis in C. neoformans
doi:10.1128/mBio.00220-13
PMCID: PMC3663189  PMID: 23653445
8.  Involvement of PDK1, PKC and TOR signaling pathways in basal fluconazole tolerance in Cryptococcus neoformans 
Molecular Microbiology  2012;84(1):130-146.
Summary
This study shows the importance of PDK1, TOR and PKC signaling pathways to the basal tolerance of Cryptococcus neoformans toward fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1, or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sinΔ1, ypk1Δ, and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild-type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment.
doi:10.1111/j.1365-2958.2012.08016.x
PMCID: PMC3313003  PMID: 22339665
PDK1; PKC; TOR; fluconazole; sphingolipid; virulence
9.  Aneuploidy and Drug Resistance in Pathogenic Fungi 
PLoS Pathogens  2012;8(11):e1003022.
doi:10.1371/journal.ppat.1003022
PMCID: PMC3499572  PMID: 23166494
10.  Identification of a Cryptococcus neoformans Cytochrome P450 Lanosterol 14α-Demethylase (Erg11) Residue Critical for Differential Susceptibility between Fluconazole/Voriconazole and Itraconazole/Posaconazole 
Cryptococcus neoformans strains resistant to azoles due to mutations causing alterations in the ERG11 gene, encoding lanosterol 14α-demethylase, have rarely been reported. In this study, we have characterized a C. neoformans serotype A strain that is resistant to high concentrations of fluconazole (FLC). This strain, which was isolated from an FLC-treated patient, contained five missense mutations in the ERG11 gene compared to the sequence of reference strain H99. Molecular manipulations of the ERG11 gene coupled with susceptibility to triazole revealed that a single missense mutation resulting in the replacement of tyrosine by phenylalanine at amino acid 145 was sufficient to cause the high FLC resistance of the strain. Importantly, this newly identified point mutation in the ERG11 gene of C. neoformans afforded resistance to voriconazole (VRC) but increased susceptibility to itraconazole (ITC) and posaconazole (PSC), which are structurally similar to each other but distinct from FLC/VRC. The in vitro susceptibility/resistance of the strains with or without the missense mutation was reflected in the therapeutic efficacy of FLC versus ITC in the animals infected with the strains. This study shows the importance of the Y145F alteration of Erg11 in C. neoformans for manifestation of differential susceptibility toward different triazoles. It underscores the necessity of in vitro susceptibility testing for each FLC-resistant C. neoformans clinical isolate against different groups of azoles in order to assist patient management.
doi:10.1128/AAC.05502-11
PMCID: PMC3294891  PMID: 22155829
11.  Identification and Characterization of an Aspergillus fumigatus “Supermater” Pair 
mBio  2011;2(6):e00234-11.
Abstract
The mating efficiency of 50 Aspergillus fumigatus isolates from both clinical and environmental sources was analyzed. Forty isolates completed the sexual cycle in 4 weeks with variable levels of fertility designated high, medium, or low. Two opposite-mating-type strains exhibiting the highest fertility, AFB62 (MAT1-1), isolated from a case of invasive aspergillosis, and AFIR928 (MAT1-2), isolated from the environment, were chosen as the supermater pair. Single cleistothecia obtained from a cross of the two strains harbored a minimum of 1 × 104 ascospores. The viability of ascospores increased with the age of the fruiting body, 17% at 4 weeks and reaching 95% at 20 weeks. AFB62 and AFIR928 were equally virulent in two different murine models, despite differences in their sources. High recombination frequencies were observed when the closely linked genes alb1 (AFUA_2G17600) and abr2 (AFUA_2G17530) were used as genetic markers. Comparative genome hybridization analyses revealed that only 86 genes (ca. 0.86% of the genome) are significantly diverged between AFB62 and AFIR928. The high fertility in a relatively short period, combined with a high degree of virulence and a high recombination frequency, demonstrates that the mating pair AFB62 and AFIR928 provides an excellent tool for genetic studies of A. fumigatus.
Importance Aspergillus fumigatus is a heterothallic fungal pathogen that causes life-threatening infections in immunocompromised hosts. Although heterothallism facilitates genetic study via recombinational analysis, previous work showed that a 6-month incubation period is required for the completion of sexual reproduction in this species. Such a long incubation period impedes progress in genetic research. To discover a highly fertile (supermater) pair that can complete the sexual cycle in a considerably shorter period, we screened 50 strains collected from various geographic regions for mating efficiency. We identified a highly virulent pair of supermaters that can be an invaluable tool for genetic study.
Importance
Aspergillus fumigatus is a heterothallic fungal pathogen that causes life-threatening infections in immunocompromised hosts. Although heterothallism facilitates genetic study via recombinational analysis, previous work showed that a 6-month incubation period is required for the completion of sexual reproduction in this species. Such a long incubation period impedes progress in genetic research. To discover a highly fertile (supermater) pair that can complete the sexual cycle in a considerably shorter period, we screened 50 strains collected from various geographic regions for mating efficiency. We identified a highly virulent pair of supermaters that can be an invaluable tool for genetic study.
doi:10.1128/mBio.00234-11
PMCID: PMC3225970  PMID: 22108383
12.  C. neoformans Site-2 protease is required for virulence and survival in the presence of azole drugs 
Molecular microbiology  2009;74(3):672-690.
SUMMARY
In the human fungal pathogen Cryptococcus neoformans, the SREBP ortholog Sre1 is important for adaptation and growth in nutrient-limiting host tissues. In this study, we characterize the C. neoformans serotype A Sre1 and its activating protease, Stp1. We demonstrate that Stp1 is a functionally conserved ortholog of the mammalian Site-2 protease and that Stp1 cleaves Sre1 within its predicted first transmembrane segment. Gene expression analysis revealed that Stp1 is required for both Sre1-dependent and Sre1-independent gene transcription, indicating that other substrates of Stp1 may exist. Using gas chromatography, we showed that Sre1 and Stp1 are required for both normoxic and hypoxic ergosterol biosynthesis, and therefore cells lacking SRE1 or STP1 are defective for growth in the presence of low levels of the ergosterol biosynthesis inhibitors, itraconazole and 25-thialanosterol. Importantly, our studies demonstrated fungicidal effects of itraconazole and 25-thialanosterol toward sre1Δ and stp1Δ cells, demonstrating that the Sre1 pathway is required for both growth and survival in the presence of sterol biosynthesis-inhibiting antifungal drugs. Given the need for fungicidal drugs, we propose that inhibitors of Stp1, Sre1, or other regulators of Sre1 function administered in combination with a sterol synthesis inhibitor could prove an effective anti-cryptococcal therapy.
doi:10.1111/j.1365-2958.2009.06895.x
PMCID: PMC2917040  PMID: 19818023
Cryptococcus neoformans; SREBP; hypoxia; sterol; ergosterol; azole; Sre1
13.  Regulatory Diversity of TUP1 in Cryptococcus neoformans▿ † 
Eukaryotic Cell  2009;8(12):1901-1908.
Cryptococcus neoformans serotype A strains, the major cause of cryptococcosis, are distributed worldwide, while serotype D strains are more concentrated in Central Europe. We have previously shown that deletion of the global regulator TUP1 in serotype D isolates results in a novel peptide-mediated, density-dependent growth phenotype that mimics quorum sensing and is not known to exist in other fungi. Unlike for tup1Δ strains of serotype D, the density-dependent growth phenotype was found to be absent in tup1Δ strains of serotype A which had been derived from several different genetic clusters. The serotype A H99 tup1Δ strain showed less retardation in the growth rate than tup1Δ strains of serotype D, but the mating efficiency was found to be similar in both serotypes. Deletion of TUP1 in the H99 strain resulted in significantly enhanced capsule production and defective melanin formation and also revealed a unique regulatory role of the TUP1 gene in maintaining iron/copper homeostasis. Differential expression of various genes involved in capsule formation and iron/copper homeostasis was observed between the wild-type and tup1Δ H99 strains. Furthermore, the H99 tup1Δ strain displayed pleiotropic effects which included sensitivity to sodium dodecyl sulfate, susceptibility to fluconazole, and attenuated virulence. These results demonstrate that the global regulator TUP1 has pathobiological significance and plays both conserved and distinct roles in serotype A and D strains of C. neoformans.
doi:10.1128/EC.00256-09
PMCID: PMC2794222  PMID: 19820119
14.  Conservation of the Sterol Regulatory Element-Binding Protein Pathway and Its Pathobiological Importance in Cryptococcus neoformans▿  
Eukaryotic Cell  2009;8(11):1770-1779.
The mammalian sterol regulatory element-binding protein (SREBP) homolog, Sre1, is important for adaptation and growth of Cryptococcus neoformans in the mouse brain, where oxygen concentration and nutritional conditions are suboptimal for fungal growth. The extent of conservation of the SREBP pathway in C. neoformans or in any other fungi, however, has not been investigated. We generated mutants susceptible to low oxygen and identified six genes that play a role in the SREBP pathway. Three of these genes (SFB2, KAP123, and GSK3) are not known to be involved in the SREBP pathway in other fungi. Furthermore, we show that C. neoformans contains an additional gene, DAM1, which functions in the SREBP pathway but is yet to be described. Mutants associated with the steps prior to formation of the nuclear Sre1 form dramatically reduced accumulation of the nuclear form under low-oxygen conditions. Concurrently, two mutant strains, scp1Δ and stp1Δ, and the previously isolated sre1Δ strain showed reduction in ergosterol levels, hypersensitivity to several chemical agents, including azole antifungals, CoCl2, and compounds producing reactive oxygen or nitrogen species, and most importantly, reduced virulence in mice. Mutants affecting genes involved in later steps of the Sre1 pathway, such as those required for import and phosphorylation of proteins in the nucleus, showed less compelling phenotypes. These findings suggest that the SREBP pathway is highly conserved in C. neoformans and it serves as an important link between sterol biosynthesis, oxygen sensing, CoCl2 sensitivity, and virulence in C. neoformans.
doi:10.1128/EC.00207-09
PMCID: PMC2772393  PMID: 19749173
15.  Cryptococcus neoformans Overcomes Stress of Azole Drugs by Formation of Disomy in Specific Multiple Chromosomes 
PLoS Pathogens  2010;6(4):e1000848.
Cryptococcus neoformans is a haploid environmental organism and the major cause of fungal meningoencephalitis in AIDS patients. Fluconazole (FLC), a triazole, is widely used for the maintenance therapy of cryptococcosis. Heteroresistance to FLC, an adaptive mode of azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We used comparative genome hybridization and quantitative real-time PCR in order to show that C. neoformans adapts to high concentrations of FLC by duplication of multiple chromosomes. Formation of disomic chromosomes in response to FLC stress was observed in both serotype A and D strains. Strains that adapted to FLC concentrations higher than their minimal inhibitory concentration (MIC) contained disomies of chromosome 1 and stepwise exposure to even higher drug concentrations induced additional duplications of several other specific chromosomes. The number of disomic chromosomes in each resistant strain directly correlated with the concentration of FLC tolerated by each strain. Upon removal of the drug pressure, strains that had adapted to high concentrations of FLC returned to their original level of susceptibility by initially losing the extra copy of chromosome 1 followed by loss of the extra copies of the remaining disomic chromosomes. The duplication of chromosome 1 was closely associated with two of its resident genes: ERG11, the target of FLC and AFR1, the major transporter of azoles in C. neoformans. This adaptive mechanism in C. neoformans may play an important role in FLC therapy failure of cryptococcosis leading to relapse during azole maintenance therapy.
Author Summary
Cryptococcus neoformans is an environmental fungus that causes life threatening brain disease, primarily in AIDS patients. The disease is estimated to claim 700,000 lives annually world-wide but most heavily in Africa. Fluconazole (FLC), a fungistatic antifungal drug, is commonly used to treat patients for long term maintenance therapy. Recurrence of cryptococcosis in AIDS patients undergoing FLC maintenance therapy has been increasingly reported. Heteroresistance, an adaptive azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We previously described that C. neoformans strains are innately heteroresistant to FLC; each strain producing a fraction of subpopulation that can tolerate a high concentration of the drug. These resistant subpopulations revert to original phenotype during maintenance in drug free media. Various methods including cDNA microarrays, comparative genome hybridization and quantitative PCR have been applied to uncover the mechanism involved in the adaptation of C. neoformans to high concentrations of FLC and subsequent loss of resistance upon the removal of drug pressure. We discovered that C. neoformans adapts to high concentration of FLC by formation of disomy in multiple chromosomes. The removal of drug pressure results in a sequential loss of the extra chromosomal copies. It is likely that this novel mechanism of adaptation contributes to the failure of FLC therapy for cryptococcosis.
doi:10.1371/journal.ppat.1000848
PMCID: PMC2848560  PMID: 20368972
16.  Heteroresistance to Fluconazole in Cryptococcus neoformans Is Intrinsic and Associated with Virulence▿ †  
In 1999, heteroresistance to triazoles was reported in Cryptococcus neoformans strains isolated from an azole therapy failure case of cryptococcosis in an AIDS patient and in a diagnostic strain from a non-AIDS patient. In this study, we analyzed 130 strains of C. neoformans isolated from clinical and environmental sources before 1979, prior to the advent of triazoles, and 16 fluconazole (FLC)-resistant strains isolated from AIDS patients undergoing FLC maintenance therapy during 1990 to 2000. All strains isolated prior to 1979 manifested heteroresistance (subset of a population that grows in the presence of FLC) at concentrations between 4 and 64 μg/ml, and all 16 FLC-resistant AIDS isolates manifested heteroresistance at concentrations between 16 and 128 μg/ml. Upon exposure to stepwise increases in the concentration of FLC, subpopulations that could grow at higher concentrations emerged. Repeated transfer on drug-free media caused the highly resistant subpopulations to revert to the original level of heteroresistance. The reversion pattern fell into four categories based on the number of transfers required. The strains heteroresistant at ≥32 μg/ml were significantly more resistant to other xenobiotics and were also more virulent in mice than were those heteroresistant at ≤8 μg/ml. During FLC treatment of mice infected by strains with low levels of heteroresistance, subpopulations exhibiting higher levels of heteroresistance emerged after a certain period of time. The ABC transporter AFR1, known to efflux FLC, was unrelated to the heteroresistance mechanism. Our study showed that heteroresistance to azole is universal and suggests that heteroresistance contributes to relapse of cryptococcosis during azole maintenance therapy.
doi:10.1128/AAC.00295-09
PMCID: PMC2704677  PMID: 19414582
17.  Invasion of C. neoformans into human brain microvascular endothelial cells requires protein kinase C-α activation 
Cellular microbiology  2008;10(9):1854-1865.
Pathogenic fungus C. neoformans has a predilection for the central nervous system causing devastating meningoencephalitis. Traversal of C. neoformans across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of C. neoformans. Our previous studies have shown that the CPS1 gene is required for C. neoformans adherence to the surface protein CD44 of human brain microvascular endothelial cells (HBMEC), which constitute the BBB. In this report, we demonstrated that C. neoformans invasion of HBMEC was blocked in the presence of G109203X, a protein kinase C inhibitor, and by overexpression of a dominant-negative form of PKCα in HBMEC. During C. neoformans infection, phosphorylation of PKCα was induced and the PKC enzymatic activity was detected in the HBMEC membrane fraction. Our results suggested that the PKC α-isoform might play a crucial role during C. neoformans invasion. Immunofluorescence microscopic images showed that induced phospho-PKCα colocalized with α-actin on the membrane of HBMEC. In addition, cytochalasin D (an F-filament disrupting agent) inhibited fungus invasion into HBMEC in a dose-dependent manner. Furthermore, blockage of PKCα function attenuated actin filament activity during C. neoformans invasion. These results suggest a significant role of PKCα and downstream actin filament activity during the fungal invasion into HBMEC.
doi:10.1111/j.1462-5822.2008.01172.x
PMCID: PMC2729555  PMID: 18489726
18.  Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride 
PLoS Pathogens  2008;4(9):e1000155.
Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl2)-sensitive mutants. All the CoCl2-sensitive mutants had a growth defect under low oxygen conditions at 37°C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl2 as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans.
Author Summary
Cryptococcus neoformans is an obligate aerobic fungus that requires atmospheric levels of oxygen (21%) for optimal growth. However, the fungus is able to cause life-threatening brain infections in humans, where the oxygen tension is significantly lower than 21%. To understand the pathobiology of Cryptococcus neoformans, it is important to explore the molecular mechanisms adopted by the fungus to survive under low oxygen conditions. By using cobalt chloride, a hypoxia-mimicking agent, we isolated a number of mutants that are unable to grow in the presence of 0.7 mM CoCl2 as well as at low oxygen conditions. In this study, we show that mitochondria play an important role for C. neoformans to survive in low oxygen conditions. We demonstrate that mutants harboring mutations in the genes related to mitochondrial functions have mitochondrial membrane permeability defect and lowered respiration rate and are more sensitive to stress generating chemicals, in addition to their inability to survive at low oxygen conditions. Finally, we also show that when wild-type cells are exposed to hypoxia-mimicking cobalt chloride, expression of genes involved in respiration and iron and sterol homeostasis, as well as ubiquitination, changes significantly.
doi:10.1371/journal.ppat.1000155
PMCID: PMC2528940  PMID: 18802457
19.  Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils 
PLoS ONE  2008;3(7):e2655.
Background
Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis in immunocompromised patients. Several studies have addressed the mechanism involved in host defense but only few have investigated the pathogen's response to attack by the host cells. To our knowledge, this is the first study that investigates the genes differentially expressed in conidia vs hyphae of A. fumigatus in response to neutrophils from healthy donors as well as from those with chronic granulomatous disease (CGD) which are defective in the production of reactive oxygen species.
Methodology/Principal Findings
Transcriptional profiles of conidia and hyphae exposed to neutrophils, either from normal donors or from CGD patients, were obtained by using the genome-wide microarray. Upon exposure to either normal or CGD neutrophils, 244 genes were up-regulated in conidia but not in hyphae. Several of these genes are involved in the degradation of fatty acids, peroxisome function and the glyoxylate cycle which suggests that conidia exposed to neutrophils reprogram their metabolism to adjust to the host environment. In addition, the mRNA levels of four genes encoding proteins putatively involved in iron/copper assimilation were found to be higher in conidia and hyphae exposed to normal neutrophils compared to those exposed to CGD neutrophils. Deletants in several of the differentially expressed genes showed phenotypes related to the proposed functions, i.e. deletants of genes involved in fatty acid catabolism showed defective growth on fatty acids and the deletants of iron/copper assimilation showed higher sensitivity to the oxidative agent menadione. None of these deletants, however, showed reduced resistance to neutrophil attack.
Conclusion
This work reveals the complex response of the fungus to leukocytes, one of the major host factors involved in antifungal defense, and identifies fungal genes that may be involved in establishing or prolonging infections in humans.
doi:10.1371/journal.pone.0002655
PMCID: PMC2481287  PMID: 18648542
20.  Role of laeA in the Regulation of alb1, gliP, Conidial Morphology, and Virulence in Aspergillus fumigatus▿  
Eukaryotic Cell  2007;6(9):1552-1561.
The alb1 (pksP) gene has been reported as a virulence factor controlling the pigmentation and morphology of conidia in Aspergillus fumigatus. A recent report suggested that laeA regulates alb1 expression and conidial morphology but not pigmentation in the A. fumigatus strain AF293. laeA has also been reported to regulate the synthesis of secondary metabolites, such as gliotoxin. We compared the role of laeA in the regulation of conidial morphology and the expression of alb1 and gliP in strains B-5233 and AF293, which differ in colony morphology and nutritional requirements. Deletion of laeA did not affect conidial morphology or pigmentation in these strains, suggesting that laeA is not involved in alb1 regulation during conidial morphogenesis. Deletion of laeA, however, caused down-regulation of alb1 during mycelial growth in a liquid medium. Transcription of gliP, involved in the synthesis of gliotoxin, was drastically reduced in B-5233laeAΔ, and the gliotoxin level found in the culture filtrates was 20% of wild-type concentrations. While up-regulation of gliP in AF293 was comparable to that in B-5233, the relative mRNA level in AF293laeAΔ was about fourfold lower than that in B-5233laeAΔ. Strain B-5233laeAΔ caused slower onset of fatal infection in mice relative to that with B-5233. Histopathology of sections from lungs of infected mice corroborated the survival data. Culture filtrates from B-5233laeAΔ caused reduced death in thymoma cells and were less inhibitory to a respiratory burst of neutrophils than culture filtrates from B-5233. Our results suggest that while laeA is not involved in the regulation of alb1 function in conidial morphology, it regulates the synthesis of gliotoxin and the virulence of A. fumigatus.
doi:10.1128/EC.00140-07
PMCID: PMC2043373  PMID: 17630330
21.  Gliotoxin Is a Virulence Factor of Aspergillus fumigatus: gliP Deletion Attenuates Virulence in Mice Immunosuppressed with Hydrocortisone▿  
Eukaryotic Cell  2007;6(9):1562-1569.
Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiological role of gliotoxin in two different mouse strains, 129/Sv and BALB/c, that were immunosuppressed by hydrocortisone alone to avoid neutropenia. These strains of mice were infected using the isogenic set of a wild type strain (B-5233) and its mutant strain (gliPΔ) and the the glip reconstituted strain (gliPR). The gliP gene encodes a nonribosomal peptide synthase that catalyzes the first step in gliotoxin biosynthesis. The gliPΔ strain was significantly less virulent than strain B-5233 or gliPR in both mouse models. In vitro assays with culture filtrates (CFs) of B-5233, gliPΔ, and gliPR strains showed the following: (i) deletion of gliP abrogated gliotoxin production, as determined by high-performance liquid chromatography analysis; (ii) unlike the CFs from strains B-5233 and gliPR, gliPΔ CFs failed to induce proapoptotic processes in EL4 thymoma cells, as tested by Bak conformational change, mitochondrial-membrane potential disruption, superoxide production, caspase 3 activation, and phosphatidylserine translocation. Furthermore, superoxide production in human neutrophils was strongly inhibited by CFs from strain B-5233 and the gliPR strain, but not the gliPΔ strain. Our study confirms that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliotoxin.
doi:10.1128/EC.00141-07
PMCID: PMC2043361  PMID: 17601876
22.  Identification and Characterization of CPS1 as a Hyaluronic Acid Synthase Contributing to the Pathogenesis of Cryptococcus neoformans Infection▿  
Eukaryotic Cell  2007;6(8):1486-1496.
Cryptococcus neoformans is a pathogenic yeast that often causes devastating meningoencephalitis in immunocompromised individuals. We have previously identified the C. neoformans CPS1 gene, which is required for a capsular layer on the outer cell wall. In this report, we investigate the function of the CPS1 gene and its pathogenesis. We demonstrated that treatment of yeast with either 4-methylumbelliferone or hyaluronidase resulted in a reduction of the level of C. neoformans binding to human brain microvascular endothelial cells (HBMEC). Yeast extracellular structures were also altered accordingly in hyaluronidase-treated cells. Furthermore, observation of yeast strains with different hyaluronic acid contents showed that the ability to bind to HBMEC is proportional to the hyaluronic acid content. A killing assay with Caenorhabditis elegans demonstrated that the CPS1 wild-type strain is more virulent than the cps1Δ strain. When CPS1 is expressed in Saccharomyces cerevisiae and Escherichia coli, hyaluronic acid can be detected in the cells. Additionally, we determined by fluorophore-assisted carbohydrate electrophoretic analysis that hyaluronic acid is a component of the C. neoformans capsule. The size of hyaluronic acid molecules is evaluated by gel filtration and transmission electron microscopy studies. Together, our results support that C. neoformans CPS1 encodes hyaluronic acid synthase and that its product, hyaluronic acid, plays a role as an adhesion molecule during the association of endothelial cells with yeast.
doi:10.1128/EC.00120-07
PMCID: PMC1951127  PMID: 17545316
23.  Agrobacterium tumefaciens-Mediated Transformation of Aspergillus fumigatus: an Efficient Tool for Insertional Mutagenesis and Targeted Gene Disruption 
Agrobacterium tumefaciens was used to transform Aspergillus fumigatus by either random or site-directed integration of transforming DNA (T-DNA). Random mutagenesis via Agrobacterium tumefaciens-mediated transformation (ATMT) was accomplished with T-DNA containing a hygromycin resistance cassette. Cocultivation of A. fumigatus conidia and Agrobacterium (1:10 ratio) for 48 h at 24°C resulted in high frequencies of transformation (>100 transformants/107 conidia). The majority of transformants harbored a randomly integrated single copy of T-DNA and were mitotically stable. We chose alb1, a polyketide synthase gene, as the target gene for homologous integration because of the clear phenotype difference between the white colonies of Δalb1 mutant strains and the bluish-green colonies of wild-type strains. ATMT with a T-DNA-containing alb1 disruption construct resulted in 66% albino transformants. Southern analysis revealed that 19 of the 20 randomly chosen albino transformants (95%) were disrupted by homologous recombination. These results suggest that ATMT is an efficient tool for transformation, random insertional mutagenesis, and gene disruption in A. fumigatus.
doi:10.1128/AEM.71.4.1798-1802.2005
PMCID: PMC1082565  PMID: 15812003
24.  Cas3p Belongs to a Seven-Member Family of Capsule Structure Designer Proteins 
Eukaryotic Cell  2004;3(6):1513-1524.
The polysaccharide capsule is the main virulence factor of the basidiomycetous yeast Cryptococcus neoformans. Four genes (CAP10, CAP59, CAP60, and CAP64) essential for capsule formation have been previously identified, although their roles in the biosynthetic pathway remain unclear. A genetic and bioinformatics approach allowed the identification of six CAP64-homologous genes, named CAS3, CAS31, CAS32, CAS33, CAS34, and CAS35, in the C. neoformans genome. This gene family is apparently specific in a subclass of the basidiomycete fungi. Single as well as double deletions of these genes in all possible combinations demonstrated that none of the CAP64-homologous genes were essential for capsule formation, although the cas35Δ strains displayed a hypocapsular phenotype. The chemical structure of the glucuronomannan (GXM) produced by the CAS family deletants revealed that these genes determined the position and the linkage of the xylose and/or O-acetyl residues on the mannose backbone. Hence, these genes are all involved in assembly of the GXM structure in C. neoformans.
doi:10.1128/EC.3.6.1513-1524.2004
PMCID: PMC539033  PMID: 15590825

Results 1-25 (33)