Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Application of a telomerase-based circulating tumor cell (CTC) assay in bladder cancer patients receiving postoperative radiation therapy 
Cancer Biology & Therapy  2014;15(6):683-687.
Muscle invasive bladder carcinoma is an often lethal disease that requires aggressive treatment. Improved assays would contribute to better risk prediction and clinical management of this disease. A telomerase-based assay to detect circulating tumor cells (CTCs) may usefully fulfill this role.
Two patients (C1 and C2) were enrolled onto an IRB-approved bladder biomarker study before initiating post-operative radiation therapy (RT) for muscle invasive bladder carcinoma. Blood samples were taken at predefined intervals: before, during, and after RT and then retrospectively correlated with imaging studies and disease course.
C1 began RT for positive resection margins on surgical pathology, at which time CTCs were undetectable and pelvic imaging demonstrated no evidence of disease. However, following the completion of treatment, the patient’s CTC count was found to have increased to 202 CTCs/mL, and MRI demonstrated new abdominal and pelvic masses consistent with progressive disease. C1 ultimately died of disease with distant and local failure. Conversely, C2 was found to have 632 CTCs/mL before the initiation of RT for positive surgical margins, although imaging demonstrated no visible masses. At the conclusion of RT, repeat imaging showed changes that were indeterminate for either tumor recurrence or post-radiation effects. However, the patient’s CTC count had dropped to 184 CTCs/mL. Furthermore, a second follow-up assay performed 6 months later revealed no detectable CTCs and repeat imaging showed complete resolution of worrisome imaging changes, thus excluding tumor progression.
To our knowledge this is the first report of a telomerase-based assay to identify CTCs in bladder cancer patients. Further studies are required to fully determine the ultimate clinical utility of this assay. However, the two patient vignettes described here illustrate how serial CTC assays may track the disease course and inform the management of bladder cancer patients undergoing adjuvant RT and potentially chemotherapy.
PMCID: PMC4049784  PMID: 24618718
circulating tumor cell; CTC; bladder cancer; telomerase; radiation therapy; CTC assay
2.  Detection of Brain Tumor Cells in the Peripheral Blood by a Telomerase Promoter-Based Assay 
Cancer research  2014;74(8):2152-2159.
Blood tests to detect circulating tumor cells (CTC) offer great potential to monitor disease status, gauge prognosis, and guide treatment decisions for patients with cancer. For patients with brain tumors, such as aggressive glioblastoma multiforme, CTC assays are needed that do not rely on expression of cancer cell surface biomarkers like epithelial cell adhesion molecules that brain tumors tend to lack. Here, we describe a strategy to detect CTC based on telomerase activity, which is elevated in nearly all tumor cells but not normal cells. This strategy uses an adenoviral detection system that is shown to successfully detect CTC in patients with brain tumors. Clinical data suggest that this assay might assist interpretation of treatment response in patients receiving radiotherapy, for example, to differentiate pseudoprogression from true tumor progression. These results support further development of this assay as a generalized method to detect CTC in patients with cancer.
PMCID: PMC4144786  PMID: 24525740
3.  18F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns 
The Scientific World Journal  2013;2013:796029.
Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional 18F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM) due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. 18F-Fluorothymidine (FLT) in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of 18F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT), and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with 18F-FDG and 18F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67), DNA damage and repair (γH2AX), hypoxia (HIF-1α), and angiogenesis (VEGF). Results. We confirmed that 18F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that 18F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. 18F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.
PMCID: PMC3649687  PMID: 23690748
4.  An Integrated Method for Reproducible and Accurate Image-Guided Stereotactic Cranial Irradiation of Brain Tumors Using the Small Animal Radiation Research Platform1 
Translational Oncology  2012;5(4):230-237.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.
PMCID: PMC3431032  PMID: 22937174
5.  Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1 
Neoplasia (New York, N.Y.)  2007;9(4):341-348.
Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.
PMCID: PMC1854847  PMID: 17460778
Ras; EGFR; radiosensitivity; signal transduction; cancer

Results 1-5 (5)