Search tips
Search criteria

Results 1-25 (43)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Structure and Function of Voltage-Gated Sodium Channels at Atomic Resolution 
Experimental physiology  2013;99(1):10.1113/expphysiol.2013.071969.
Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other excitable cells. Early physiological studies described sodium selectivity, voltage-dependent activation, and fast inactivation, and developed conceptual models for sodium channel function. This review article follows the topics of my 2013 Sharpey-Schafer Prize Lecture and gives an overview of research using a combination of biochemical, molecular biological, physiological, and structural biological approaches that has elucidated the structure and function of sodium channels at the atomic level. Structural models for voltage-dependent activation, sodium selectivity and conductance, drug block, and both fast and slow inactivation are discussed. A perspective for the future envisions new advances in understanding the structural basis for sodium channel function and the opportunity for structure-based discovery of novel therapeutics.
PMCID: PMC3885250  PMID: 24097157
2.  AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling 
Cell reports  2014;7(5):1577-1588.
In neurons, Ca2+ influx through L-type voltage-gated Ca2+ channels (LTCC) couples electrical activity to changes in transcription. LTCC activity is elevated by the cAMP-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), with both enzymes localized to the channel by A-kinase anchoring protein (AKAP) 79/150. AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T-cells (NFAT). We report here that genetic disruption of PKA anchoring to AKAP79/150 also interferes with LTCC activation of CaN-NFAT signaling in neurons. Disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Our findings support a model wherein basal activity of AKAP79/150-anchored PKA opposes CaN to preserve LTCC phosphorylation, thereby sustaining LTCC activation of CaN-NFAT signaling to the neuronal nucleus.
PMCID: PMC4136445  PMID: 24835999
3.  Localization of Sodium Channel Subtypes in Mouse Ventricular Myocytes Using Quantitative Immunocytochemistry 
Journal of molecular and cellular cardiology  2013;64:10.1016/j.yjmcc.2013.08.004.
Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
PMCID: PMC3851329  PMID: 23982034
4.  Differential regulation of cardiac excitation–contraction coupling by cAMP phosphodiesterase subtypes 
Cardiovascular Research  2013;100(2):336-346.
Multiple phosphodiesterases (PDEs) hydrolyze cAMP in cardiomyocytes, but the functional significance of this diversity is not well understood. Our goal here was to characterize the involvement of three different PDEs (PDE2–4) in cardiac excitation–contraction coupling (ECC).
Methods and results
Sarcomere shortening and Ca2+ transients were recorded simultaneously in adult rat ventricular myocytes and ECC protein phosphorylation by PKA was determined by western blot analysis. Under basal conditions, selective inhibition of PDE2 or PDE3 induced a small but significant increase in Ca2+ transients, sarcomere shortening, and troponin I phosphorylation, whereas PDE4 inhibition had no effect. PDE3 inhibition, but not PDE2 or PDE4, increased phospholamban phosphorylation. Inhibition of either PDE2, 3, or 4 increased phosphorylation of the myosin-binding protein C, but neither had an effect on L-type Ca2+ channel or ryanodine receptor phosphorylation. Dual inhibition of PDE2 and PDE3 or PDE2 and PDE4 further increased ECC compared with individual PDE inhibition, but the most potent combination was obtained when inhibiting simultaneously PDE3 and PDE4. This combination also induced a synergistic induction of ECC protein phosphorylation. Submaximal β-adrenergic receptor stimulation increased ECC, and this effect was potentiated by individual PDE inhibition with the rank order of potency PDE4 = PDE3 > PDE2. Identical results were obtained on ECC protein phosphorylation.
Our results demonstrate that PDE2, PDE3, and PDE4 differentially regulate ECC in adult cardiomyocytes. PDE2 and PDE3 play a more prominent role than PDE4 in regulating basal cardiac contraction and Ca2+ transients. However, PDE4 becomes determinant when cAMP levels are elevated, for instance, upon β-adrenergic stimulation or PDE3 inhibition.
PMCID: PMC3888219  PMID: 23933582
Phosphodiesterase; Excitation–contraction coupling; cAMP; Protein phosphorylation
5.  Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome 
Channels  2013;7(6):468-472.
Dravet Syndrome (DS) is an intractable genetic epilepsy caused by loss‐of‐function mutations in SCN1A, the gene encoding brain sodium channel Nav1.1. DS is associated with increased frequency of sudden unexpected death in humans and in a mouse genetic model of this disease. Here we correlate the time course of declining expression of the murine embryonic sodium channel Nav1.3 and the rise in expression of the adult sodium channel Nav1.1 with susceptibility to epileptic seizures and increased incidence of sudden death in DS mice. Parallel studies with unaffected human brain tissue demonstrate similar decline in Nav1.3 and increase in Nav1.1 with age. In light of these results, we introduce the hypothesis that the natural loss Nav1.3 channel expression in brain development, coupled with the failure of increase in functional Nav1.1 channels in DS, defines a tipping point that leads to disinhibition of neural circuits, intractable seizures, co‐morbidities, and premature death in this disease.
PMCID: PMC4042481  PMID: 23965409
Dravet syndrome; epilepsy; ion channel; premature death; seizure; sodium channel
6.  Differential regulation of CaV1.2 channels by cAMP-dependent protein kinase bound to A-kinase anchoring proteins 15 and 79/150 
The Journal of General Physiology  2014;143(3):315-324.
AKAP79/150 and AKAP15 exert functionally antagonistic effects on CaV1.2 channels.
The CaV1.1 and CaV1.2 voltage-gated calcium channels initiate excitation-contraction coupling in skeletal and cardiac myocytes, excitation-transcription coupling in neurons, and many other cellular processes. Up-regulation of their activity by the β-adrenergic–PKA signaling pathway increases these physiological responses. PKA up-regulation of CaV1.2 activity can be reconstituted in a transfected cell system expressing CaV1.2Δ1800 truncated at the in vivo proteolytic processing site, the distal C-terminal domain (DCT; CaV1.2[1801–2122]), the auxiliary α2δ and β subunits of CaV1.2 channels, and A-kinase anchoring protein-15 (AKAP15), which binds to a site in the DCT. AKAP79/150 binds to the same site in the DCT as AKAP15. Here we report that AKAP79 is ineffective in supporting up-regulation of CaV1.2 channel activity by PKA, even though it binds to the same site in the DCT and inhibits the up-regulation of CaV1.2 channel activity supported by AKAP15. Mutation of the calcineurin-binding site in AKAP79 (AKAP79ΔPIX) allows it to support PKA-dependent up-regulation of CaV1.2 channel activity, suggesting that calcineurin bound to AKAP79 rapidly dephosphorylates CaV1.2 channels, thereby preventing their regulation by PKA. Both AKAP15 and AKAP79ΔPIX exert their regulatory effects on CaV1.2 channels in transfected cells by interaction with the modified leucine zipper motif in the DCT. Our results introduce an unexpected mode of differential regulation by AKAPs, in which binding of different AKAPs at a single site can competitively confer differential regulatory effects on the target protein by their association with different signaling proteins.
PMCID: PMC3933935  PMID: 24567507
7.  Distribution and function of sodium channel subtypes in human atrial myocardium 
Voltage-gated sodium channels composed of a pore-forming α subunit and auxiliary β subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used immunohistochemical methods to define the level of expression and the subcellular localization of sodium channel α and β subunits in human atrial myocytes. Nav1.2 channels are located in highest density at intercalated disks where β1 and β3 subunits are also expressed. Nav1.4 and the predominant Nav1.5 channels are located in a striated pattern on the cell surface at the z-lines together with β2 subunits. Nav1.1, Nav1.3, and Nav1.6 channels are located in scattered puncta on the cell surface in a pattern similar to β3 and β4 subunits. Nav1.5 comprised approximately 88% of the total sodium channel staining, as assessed by quantitative immunohistochemistry. Functional studies using whole cell patch-clamp recording and measurements of contractility in human atrial cells and tissue showed that TTX-sensitive (non-Nav1.5) α subunit isoforms account for up to 27% of total sodium current in human atrium and are required for maximal contractility. Overall, our results show that multiple sodium channel α and β subunits are differentially localized in subcellular compartments in human atrial myocytes, suggesting that they play distinct roles in initiation and conduction of the action potential and in excitation–contraction coupling. TTX-sensitive sodium channel isoforms, even though expressed at low levels relative to TTX-sensitive Nav1.5, contribute substantially to total cardiac sodium current and are required for normal contractility. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”.
PMCID: PMC3906922  PMID: 23702286
Sodium channels; Myocardium; Immunocytochemistry; Contractility
8.  Structural basis for Ca2+ selectivity of a voltage-gated calcium channel 
Nature  2013;505(7481):10.1038/nature12775.
Voltage-gated calcium (CaV) channels catalyze rapid, highly selective influx of Ca2+ into cells despite 70-fold higher extracellular concentration of Na+. How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca2+ with two high-affinity Ca2+-binding sites followed by a third lower-affinity site that would coordinate Ca2+ as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side-chains, which play a critical role in determining Ca2+ selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations, Cd2+ and Mn2+, with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca2+ ions bound in the selectivity filter and supports a “knock-off” mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding mechanisms of ion selectivity and conductance by vertebrate CaV channels.
PMCID: PMC3877713  PMID: 24270805
9.  A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb 
The Journal of General Physiology  2013;142(3):181-190.
Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.
PMCID: PMC3753604  PMID: 23980192
10.  Phosphoinositide 3-Kinase γ Protects Against Catecholamine-Induced Ventricular Arrhythmia Through Protein Kinase A–Mediated Regulation of Distinct Phosphodiesterases 
Circulation  2012;126(17):2073-2083.
Phosphoinositide 3-kinase γ (PI3Kγ) signaling engaged by β-adrenergic receptors is pivotal in the regulation of myocardial contractility and remodeling. However, the role of PI3Kγ in catecholamine-induced arrhythmia is currently unknown.
Methods and Results
Mice lacking PI3Kγ (PI3Kγ−/−) showed runs of premature ventricular contractions on adrenergic stimulation that could be rescued by a selective β2-adrenergic receptor blocker and developed sustained ventricular tachycardia after transverse aortic constriction. Consistently, fluorescence resonance energy transfer probes revealed abnormal cAMP accumulation after β2-adrenergic receptor activation in PI3Kγ−/− cardiomyocytes that depended on the loss of the scaffold but not of the catalytic activity of PI3Kγ. Downstream from β-adrenergic receptors, PI3Kγ was found to participate in multiprotein complexes linking protein kinase A to the activation of phosphodiesterase (PDE) 3A, PDE4A, and PDE4B but not of PDE4D. These PI3Kγ-regulated PDEs lowered cAMP and limited protein kinase A–mediated phosphorylation of L-type calcium channel (Cav1.2) and phospholamban. In PI3Kγ−/− cardiomyocytes, Cav1.2 and phospholamban were hyperphosphorylated, leading to increased Ca2+ spark occurrence and amplitude on adrenergic stimulation. Furthermore, PI3Kγ−/− cardiomyocytes showed spontaneous Ca2+ release events and developed arrhythmic calcium transients.
PI3Kγ coordinates the coincident signaling of the major cardiac PDE3 and PDE4 isoforms, thus orchestrating a feedback loop that prevents calcium-dependent ventricular arrhythmia.
PMCID: PMC3913165  PMID: 23008439
arrhythmias, cardiac; class II phosphatidylinositol 3-kinases; 3′,5′-cyclic-AMP phosphodiesterases; cyclic AMP-dependent protein kinases; receptors, adrenergic beta-2
11.  Voltage-Gated Calcium Channels 
Voltage-gated calcium (Ca2+) channels are key transducers of membrane potential changes into intracellular Ca2+ transients that initiate many physiological events. There are ten members of the voltage-gated Ca2+ channel family in mammals, and they serve distinct roles in cellular signal transduction. The CaV1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The CaV2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The CaV3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca2+ channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.
The activity of a voltage-gated calcium channel is enhanced by the binding of an effector ready to respond to a calcium signal. This effector checkpoint mechanism may be a unifying theme in voltage-gated calcium channel regulation.
PMCID: PMC3140680  PMID: 21746798
12.  Increased intracellular magnesium attenuates β-adrenergic stimulation of the cardiac CaV1.2 channel 
Increases in intracellular Mg2+ (Mg2+i), as observed in transient cardiac ischemia, decrease L-type Ca2+ current of mammalian ventricular myocytes (VMs). However, cardiac ischemia is associated with an increase in sympathetic tone, which could stimulate L-type Ca2+ current. Therefore, the effect of Mg2+i on L-type Ca2+ current in the context of increased sympathetic tone was unclear. We tested the impact of increased Mg2+i on the β-adrenergic stimulation of L-type Ca2+ current. Exposure of acutely dissociated adult VMs to higher Mg2+i concentrations decreased isoproterenol stimulation of the L-type Ca2+ current from 75 ± 13% with 0.8 mM Mg2+i to 20 ± 8% with 2.4 mM Mg2+i. We activated this signaling cascade at different steps to determine the site or sites of Mg2+i action. Exposure of VMs to increased Mg2+i attenuated the stimulation of L-type Ca2+ current induced by activation of adenylyl cyclase with forskolin, inhibition of cyclic nucleotide phosphodiesterases with isobutylmethylxanthine, and inhibition of phosphoprotein phosphatases I and IIA with calyculin A. These experiments ruled out significant effects of Mg2+i on these upstream steps in the signaling cascade and suggested that Mg2+i acts directly on CaV1.2 channels. One possible site of action is the EF-hand in the proximal C-terminal domain, just downstream in the signaling cascade from the site of regulation of CaV1.2 channels by protein phosphorylation on the C terminus. Consistent with this hypothesis, Mg2+i had no effect on enhancement of CaV1.2 channel activity by the dihydropyridine agonist (S)-BayK8644, which activates CaV1.2 channels by binding to a site formed by the transmembrane domains of the channel. Collectively, our results suggest that, in transient ischemia, increased Mg2+i reduces stimulation of L-type Ca2+ current by the β-adrenergic receptor by directly acting on CaV1.2 channels in a cell-autonomous manner, effectively decreasing the metabolic stress imposed on VMs until blood flow can be reestablished.
PMCID: PMC3536518  PMID: 23250865
13.  An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations 
The Journal of General Physiology  2012;140(6):587-594.
Developing an understanding of the mechanism of voltage-gated ion channels in molecular terms requires knowledge of the structure of the active and resting conformations. Although the active-state conformation is known from x-ray structures, an atomic resolution structure of a voltage-dependent ion channel in the resting state is not currently available. This has motivated various efforts at using computational modeling methods and molecular dynamics (MD) simulations to provide the missing information. A comparison of recent computational results reveals an emerging consensus on voltage-dependent gating from computational modeling and MD simulations. This progress is highlighted in the broad context of preexisting work about voltage-gated channels.
PMCID: PMC3514734  PMID: 23183694
14.  Sudden unexpected death in a mouse model of Dravet syndrome 
The Journal of Clinical Investigation  2013;123(4):1798-1808.
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in intractable epilepsies, but physiological mechanisms that lead to SUDEP are unknown. Dravet syndrome (DS) is an infantile-onset intractable epilepsy caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes brain type-I voltage-gated sodium channel NaV1.1. We studied the mechanism of premature death in Scn1a heterozygous KO mice and conditional brain- and cardiac-specific KOs. Video monitoring demonstrated that SUDEP occurred immediately following generalized tonic-clonic seizures. A history of multiple seizures was a strong risk factor for SUDEP. Combined video-electroencephalography-electrocardiography revealed suppressed interictal resting heart-rate variability and episodes of ictal bradycardia associated with the tonic phases of generalized tonic-clonic seizures. Prolonged atropine-sensitive ictal bradycardia preceded SUDEP. Similar studies in conditional KO mice demonstrated that brain, but not cardiac, KO of Scn1a produced cardiac and SUDEP phenotypes similar to those found in DS mice. Atropine or N-methyl scopolamine treatment reduced the incidence of ictal bradycardia and SUDEP in DS mice. These findings suggest that SUDEP is caused by apparent parasympathetic hyperactivity immediately following tonic-clonic seizures in DS mice, which leads to lethal bradycardia and electrical dysfunction of the ventricle. These results have important implications for prevention of SUDEP in DS patients.
PMCID: PMC3613924  PMID: 23524966
15.  Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission 
Nature  2012;489(7416):385-390.
Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS.
PMCID: PMC3448848  PMID: 22914087
16.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states 
Nature  2012;486(7401):135-139.
In excitable cells, voltage-gated sodium (NaV) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance1,2. Inactivation is a hallmark of NaV channel function and is critical for control of membrane excitability3, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type NavAb channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of NavAb S6-cysteine mutants4, the pore-lining S6 helices and the intracellular activation gate have undergone significant rearrangements in which one pair of S6 segments has collapsed toward the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type NavAb models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains also shift around the perimeter of the pore module in NavAb, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in NaV channel gating and inactivation. These potential inactivated-state structures provide new insights into NaV channel gating and novel avenues to drug development and therapy for a range of debilitating NaV channelopathies.
PMCID: PMC3552482  PMID: 22678296
17.  DRAVET SYNDROME Insights into pathophysiology and therapy from a mouse model of Dravet syndrome 
Epilepsia  2011;52(Suppl 2):59-61.
Mutations in voltage-gated sodium channels are associated with epilepsy syndromes with a wide range of severity. Complete loss of function in the Nav1.1 channel encoded by the SCN1A gene is associated with severe myoclonic epilepsy in infancy (SMEI), a devastating infantile-onset epilepsy with ataxia, cognitive dysfunction, and febrile and afebrile seizures resistant to current medications. Genetic mouse models of SMEI have been created that strikingly recapitulate the SMEI phenotype including age and temperature dependence of seizures and ataxia. Loss-of-function in Nav1.1 channels results in severely impaired sodium current and action potential firing in hippocampal γ-aminobutyric acid (GABA)ergic interneurons without detectable changes in excitatory pyramidal neurons. The resulting imbalance between excitation and inhibition likely contributes to hyperexcitability and seizures. Reduced sodium current and action potential firing in cerebellar Purkinje neurons likely contributes to comorbid ataxia. A mechanistic understanding of hyperexcitability, seizures, and comorbidities such as ataxia has led to novel strategies for treatment.
PMCID: PMC3547637  PMID: 21463282
Severe myoclonic epilepsy in infancy; SCN1A; Febrile seizures; Ataxia; Mouse genetic model
18.  The Hodgkin-Huxley Heritage: From Channels to Circuits 
The Hodgkin-Huxley studies of the action potential, published 60 years ago, are a central pillar of modern neuroscience research, ranging from molecular investigations of the structural basis of ion channel function to the computational implications at circuit level. In this Symposium Review, we aim to demonstrate the ongoing impact of Hodgkin’s and Huxley’s ideas. The Hodgkin-Huxley model established a framework in which to describe the structural and functional properties of ion channels, including the mechanisms of ion permeation, selectivity, and gating. At a cellular level, the model is used to understand the conditions that control both the rate and timing of action potentials, essential for neural encoding of information. Finally, the Hodgkin-Huxley formalism is central to computational neuroscience to understand both neuronal integration and circuit level information processing, and how these mechanisms might have evolved to minimize energy cost.
PMCID: PMC3500626  PMID: 23055474
19.  Protective effect of the ketogenic diet in Scn1a mutant mice 
Epilepsia  2011;52(11):2050-2056.
We evaluated the ability of the ketogenic diet (KD) to improve thresholds to flurothyl-induced seizures in two mouse lines with Scn1a mutations: one that models Dravet syndrome (DS) and another that models genetic (generalized) epilepsy with febrile seizures plus (GEFS+).
At postnatal day 21, mouse models of DS and GEFS+ were fasted for 12–14 hours and then placed on either a 6:1 KD or a standard diet (SD) for two weeks. At the end of the two-week period, we measured thresholds to seizures induced by the chemiconvulsant flurothyl. Body weight, β-hydroxybutyrate (BHB) levels, and glucose levels were also recorded every two days over a two-week period in separate cohorts of mutant and wild-type mice that were either on the KD or the SD.
Key Findings
Mice on the KD gained less weight and exhibited significantly higher BHB levels compared to mice on the SD. Importantly, thresholds to flurothyl-induced seizures were restored to more normal levels in both mouse lines after two weeks on the KD.
These results indicate that the KD may be an effective treatment for refractory patients with SCN1A mutations. The availability of mouse models of DS and GEFS+ also provides an opportunity to better understand the mechanism of action of the KD, which may facilitate the development of improved treatments.
PMCID: PMC3204183  PMID: 21801172
Dravet syndrome; genetic epilepsy with febrile seizures plus; mouse models; ketogenic diet; SCN1A
20.  Signaling Complexes of Voltage-gated Sodium and Calcium Channels 
Neuroscience letters  2010;486(2):107-116.
Membrane depolarization and intracellular Ca2+ transients generated by activation of voltage-gated Na+ and Ca2+ channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. This article reviews experimental results showing that Na+ and Ca2+ channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for regulation of cellular plasticity through modulation of Na+ channel function in brain neurons, for short-term synaptic plasticity through modulation of presynaptic CaV2 channels, and for the fight-or-flight response through regulation of postsynaptic CaV1 channels in skeletal and cardiac muscle. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.
PMCID: PMC3433163  PMID: 20816922
21.  Functional Properties and Differential Neuromodulation of Nav1.6 Channels 
The voltage-gated sodium channel Nav1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for NaV1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between NaV1.6 and NaV1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Nav1.6 channels, they conducted substantially larger persistent sodium currents than Nav1.2 channels, and they were much less sensitive to inhibtion by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Nav1.6 channels in neurons, was not observed for NaV1.6 expressed alone or with the auxiliary β4 subunit. The unique properties of NaV1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.
PMCID: PMC3433175  PMID: 18599309
22.  The Extracellular Matrix Molecule Hyaluronic Acid Regulates Hippocampal Synaptic Plasticity by Modulating Postsynaptic L-Type Ca2+ Channels 
Neuron  2010;67(1):116-128.
Although the extracellular matrix plays an important role in regulating use-dependent synaptic plasticity, the underlying molecular mechanisms are poorly understood. Here we examined the synaptic function of hyaluronic acid (HA), a major component of the extracellular matrix. Enzymatic removal of HA with hyaluronidase reduced nifedipine-sensitive whole-cell Ca2+ currents, decreased Ca2+ transients mediated by L-type voltage-dependent Ca2+ channels (L-VDCCs) in postsynaptic dendritic shafts and spines, and abolished an L-VDCC-dependent component of long-term potentiation (LTP) at the CA3-CA1 synapses in the hippocampus. Adding exogenous HA, either by bath perfusion or via local delivery near recorded synapses, completely rescued this LTP component. In a heterologous expression system, exogenous HA rapidly increased currents mediated by Cav1.2, but not Cav1.3, subunit-containing L-VDCCs, whereas intrahippocampal injection of hyaluronidase impaired contextual fear conditioning. Our observations unveil a previously unrecognized mechanism by which the perisynaptic extracellular matrix influences use-dependent synaptic plasticity through regulation of dendritic Ca2+ channels.
PMCID: PMC3378029  PMID: 20624596
Nature  2011;475(7356):353-358.
Voltage-gated sodium channels initiate electrical signaling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity, and drug block is unknown. Here, we report the crystal structure of a voltage-gated Na+-channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage-sensors at 2.7 Å resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage-sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures suggest that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~6.5 Å wide, and water-filled, with four acidic side-chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high field-strength anionic coordination site, which confers Na+-selectivity through partial dehydration via direct interaction with glutamate side-chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs.
PMCID: PMC3266868  PMID: 21743477
24.  Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology 
Neuron  2010;67(6):915-928.
Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore.
PMCID: PMC2950829  PMID: 20869590

Results 1-25 (43)