PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization 
Nucleic Acids Research  2014;42(16):10748-10761.
DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.
doi:10.1093/nar/gku613
PMCID: PMC4176347  PMID: 25143530
2.  Model of a DNA-Protein Complex of the Architectural Monomeric Protein MC1 from Euryarchaea 
PLoS ONE  2014;9(2):e88809.
In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.
doi:10.1371/journal.pone.0088809
PMCID: PMC3928310  PMID: 24558431
3.  Binding of the RamR Repressor to Wild-Type and Mutated Promoters of the ramA Gene Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium 
The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family. We here studied the DNA-binding activity of the RamR repressor with the ramA promoter (PramA). As determined by high-resolution footprinting, the 28-bp-long RamR binding site covers essential features of PramA, including the −10 conserved region, the transcriptional start site of ramA, and two 7-bp inverted repeats. Based on the RamR footprint and on electrophoretic mobility shift assays (EMSAs), we propose that RamR interacts with PramA as a dimer of dimers, in a fashion that is structurally similar to the QacR-DNA binding model. Surface plasmon resonance (SPR) measurements indicated that RamR has a 3-fold-lower affinity (KD [equilibrium dissociation constant] = 191 nM) for the 2-bp-deleted PramA of an MDR S. Typhimurium clinical isolate than for the wild-type PramA (KD = 66 nM). These results confirm the direct regulatory role of RamR in the repression of ramA transcription and precisely define how an alteration of its binding site can give rise to an MDR phenotype.
doi:10.1128/AAC.05444-11
PMCID: PMC3264254  PMID: 22123696
4.  The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA 
Nucleic Acids Research  2011;40(7):3197-3207.
Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.
doi:10.1093/nar/gkr1166
PMCID: PMC3326314  PMID: 22139930
5.  5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases 
Nucleic Acids Research  2011;39(14):6277-6290.
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.
doi:10.1093/nar/gkr215
PMCID: PMC3152353  PMID: 21486746
6.  Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA 
Nucleic Acids Research  2005;33(18):5936-5944.
Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside.
doi:10.1093/nar/gki879
PMCID: PMC1266061  PMID: 16243784

Results 1-6 (6)