PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more 
FEMS microbiology reviews  2009;33(3):488-503.
The Dam methylase of gamma-proteobacteria and the CcrM methylase of alpha-proteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an “orphan” methylase devoted solely to epigenetic genome modification. Formation of 6-methyladenine lowers the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and only partially understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in E. coli, Salmonella, and Yersinia at the postranscriptional level.
doi:10.1111/j.1574-6976.2008.00159.x
PMCID: PMC2941194  PMID: 19175412
Dam; CcrM; Pathogenic bacteria; Transcription; GATC regulation
2.  YhdJ, a Nonessential CcrM-Like DNA Methyltransferase of Escherichia coli and Salmonella enterica▿  
Journal of Bacteriology  2007;189(11):4325-4327.
The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the α-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica.
doi:10.1128/JB.01854-06
PMCID: PMC1913422  PMID: 17400740

Results 1-2 (2)