PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Proteomic Analysis of Plasma-Purified VLDL, LDL, and HDL Fractions from Atherosclerotic Patients Undergoing Carotid Endarterectomy: Identification of Serum Amyloid A as a Potential Marker 
Apolipoproteins are very heterogeneous protein family, implicated in plasma lipoprotein structural stabilization, lipid metabolism, inflammation, or immunity. Obtaining detailed information on apolipoprotein composition and structure may contribute to elucidating lipoprotein roles in atherogenesis and to developing new therapeutic strategies for the treatment of lipoprotein-associated disorders. This study aimed at developing a comprehensive method for characterizing the apolipoprotein component of plasma VLDL, LDL, and HDL fractions from patients undergoing carotid endarterectomy, by means of two-dimensional electrophoresis (2-DE) coupled with Mass Spectrometry analysis, useful for identifying potential markers of plaque presence and vulnerability. The adopted method allowed obtaining reproducible 2-DE maps of exchangeable apolipoproteins from VLDL, LDL, and HDL. Twenty-three protein isoforms were identified by peptide mass fingerprinting analysis. Differential proteomic analysis allowed for identifying increased levels of acute-phase serum amyloid A protein (AP SAA) in all lipoprotein fractions, especially in LDL from atherosclerotic patients. Results have been confirmed by western blotting analysis on each lipoprotein fraction using apo AI levels for data normalization. The higher levels of AP SAA found in patients suggest a role of LDL as AP SAA carrier into the subendothelial space of artery wall, where AP SAA accumulates and may exert noxious effects.
doi:10.1155/2013/385214
PMCID: PMC3886437  PMID: 24454983
2.  New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation 
Free radical biology & medicine  2011;52(2):527-536.
Although indolone-N-oxide (INODs) genereting long-lived radicals possess antiplasmodial activity in the low-nanomolar range, little is known about their mechanism of action. To explore the molecular basis of INOD activity, we screened for changes in INOD-treated malaria-infected erythrocytes (Pf-RBCs) using a proteomics approach. At early parasite maturation stages, treatment with INODs at their IC50 concentrations induced a marked tyrosine phosphorylation of the erythrocyte membrane protein band 3, whereas no effect was observed in control RBCs. After INOD treatment of Pf-RBCs we also observed: (i) accelerated formation of membrane aggregates containing hyperphosphorylated band 3, Syk kinase, and denatured hemoglobin; (ii) dose-dependent release of microvesicles containing the membrane aggregates; (iii) reduction in band 3 phosphorylation, Pf-RBC vesiculation, and antimalarial effect of INODs upon addition of Syk kinase inhibitors; and (iv) correlation between the IC50 and the INOD concentrations required to induce band 3 phosphorylation and vesiculation. Together with previous data demonstrating that tyrosine phosphorylation of oxidized band 3 promotes its dissociation from the cytoskeleton, these results suggest that INODs cause a profound destabilization of the Pf-RBC membrane through a mechanism apparently triggered by the activation of a redox signaling pathway rather than direct oxidative damage.
doi:10.1016/j.freeradbiomed.2011.11.008
PMCID: PMC3385926  PMID: 22142474
Red blood cells; Tyrosine phosphorylation; Plasmodium falciparum; Band 3; Oxidative damage; Free radicals
3.  Identification of Phosphoproteins as Possible Differentiation Markers in All-Trans-Retinoic Acid-Treated Neuroblastoma Cells 
PLoS ONE  2011;6(5):e18254.
Background
Neuroblastic tumors account for 9–10% of pediatric tumors and neuroblastoma (NB) is the first cause of death in pre-school age children. NB is classified in four stages, depending on the extent of spreading. A fifth type of NB, so-called stage 4S (S for special), includes patients with metastatic tumors but with an overall survival that approximates 75% at five years. In most of these cases, the tumor regresses spontaneously and regression is probably associated with delayed neuroblast cell differentiation.
Methodology/Principal Findings
In order to identify new early markers to follow and predict this process for diagnostic and therapeutics intents, we mimicked the differentiation process treating NB cell line SJ-NK-P with all-trans-retinoic acid (ATRA) at different times; therefore the cell proteomic pattern by mass spectrometry and the phosphoproteomic pattern by a 2-DE approach coupled with anti-phosphoserine and anti-phosphotyrosine western blotting were studied.
Conclusions/Significance
Proteomic analysis identified only two proteins whose expression was significantly different in treated cells versus control cells: nucleoside diphosphate kinase A (NDKA) and reticulocalbin-1 (RCN1), which were both downregulated after 9 days of ATRA treatment. However, phosphoproteomic analysis identified 8 proteins that were differentially serine-phosphorylated and 3 that were differentially tyrosine-phosphorylated after ATRA treatment. All proteins were significantly regulated (at least 0.5-fold down-regulated). Our results suggest that differentially phosphorylated proteins could be considered as more promising markers of differentiation for NB than differentially expressed proteins.
doi:10.1371/journal.pone.0018254
PMCID: PMC3088664  PMID: 21573212
4.  Irreversible AE1 Tyrosine Phosphorylation Leads to Membrane Vesiculation in G6PD Deficient Red Cells 
PLoS ONE  2011;6(1):e15847.
Background
While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs.
Methodology/Principal Findings
Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM) or divicine (0.5 mM) causes: (1) an increase in the oxidation and tyrosine phosphorylation of AE1; (2) progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3) parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation.
Conclusions/Significance
Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.
doi:10.1371/journal.pone.0015847
PMCID: PMC3016414  PMID: 21246053
5.  PTP-ε HAS A CRITICAL ROLE IN SIGNALING TRANSDUCTION PATHWAYS AND PHOSPHOPROTEIN NETWORK TOPOLOGY IN RED CELLS 
Proteomics  2008;8(22):4695-4708.
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. We report here that red blood cells (RBCs) from mice lacking PTPε (Ptpre−/−) exhibit abnormal morphology and increased Ca2+-activated-K+ channel activity, which was partially blocked by the Src-Family-Kinases (SFKs) inhibitor PP1. In Ptpre−/− mouse RBCs, the activity of Fyn and Yes, two SFKs, were increased, suggesting a functional relationship between SFKs, PTPε and Ca2+-activated-K+-channel. The absence of PTPε markedly affected the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating a perturbation of RBCs signal transduction pathways. Using signaling network computational analysis of the Tyr-phosphoproteomic data, we identified 7 topological clusters. We studied cluster 1, containing Syk-Tyr-kinase: Syk-kinase activity was higher in wild-type than in Ptpre−/− RBCs, validating the network computational analysis and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology.
doi:10.1002/pmic.200700596
PMCID: PMC3008556  PMID: 18924107
Tyrosine-phosphorylation; Fyn; Syk; Gardos channel
6.  A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries 
Atherosclerosis  2008;203(1):112-118.
Objectives
By using proteomics we isolated and identified proteins that were expressed/retained in stable and unstable human carotid artery atherosclerotic plaques.
Methods
The criteria for plaque instability were the presence of a thin fibrous cap or fissured cap covering the foamy or necrotic core, and the presence of overt, hemorrhagic, ulcerated or thrombotic plaques. Proteins were extracted from finely minced endarterectomy specimens (19 stable, 29 unstable plaques) and separated by 2-dimensional gel electrophoresis. Coomassie Blue-stained gels were analysed using PD-Quest software.
Results
A total of 57 distinct spots corresponding to 33 different proteins were identified by matrix assisted laser desorption/ionization mass spectrometry using the NCBI database. Most of the spots were present in both types of extracts, although significantly (p<0.05) differing in abundance between them. Compared to stable plaque, unstable ones showed reduced abundance of: protective enzymes SOD3 and GST, small heat shock proteins HSP27 and HSP20, annexin A10, and Rho GDI. In unstable plaques the more abundant proteins were: ferritin light subunit, SOD 2 and fibrinogen fragment D. For fibrinogen fragment D, the increased levels in unstable versus stable plaques was confirmed by Western blot analysis.
Conclusions
Since many of the differentially expressed proteins are known to have a functional role in inflammation and oxidative stress, we speculate that they may be involved in events relating to plaque stability.
doi:10.1016/j.atherosclerosis.2008.07.001
PMCID: PMC2659534  PMID: 18715566
7.  Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial 
PLoS ONE  2009;4(3):e4782.
Background
Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis.
Methodology and Principal Findings
A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K+ content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association.
Conclusion and Significance
5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF.
Trial Registration
ClinicalTrials.gov NCT00730509
doi:10.1371/journal.pone.0004782
PMCID: PMC2652076  PMID: 19277125
8.  Mapping Antigenic Sites of an Immunodominant Surface Lipoprotein of Mycoplasma agalactiae, AvgC, with the Use of Synthetic Peptides  
Infection and Immunity  2002;70(1):171-176.
As a first step toward the design of an epitope vaccine to prevent contagious agalactia, the strongly immunogenic 55-kDa protein of Mycoplasma agalactiae was studied and found to correspond to the AvgC protein encoded by the avgC gene. The avg genes of M. agalactiae, which encode four variable surface lipoproteins, display a significant homology to the vsp (variable membrane surface lipoproteins) genes of the bovine pathogen Mycoplasma bovis at their promoter region as well as their N-terminus-encoding regions. Some members of the Vsp family are known to be involved in cytoadhesion to host cells. In order to localize immunogenic peptides in the AvgC antigen, the protein sequence was submitted to epitope prediction analysis, and five sets of overlapping peptides, corresponding to five selected regions, were synthesized by Spot synthesis. Reactive peptides were selected by immunobinding assay with sera from infected sheep. The three most immunogenic epitopes were shown to be surface exposed by immunoprecipitation assays, and one of these was specifically recognized by all tested sera. Our study indicates that selected epitopes of the AvgC lipoprotein may be used to develop a peptide-based vaccine which is effective against M. agalactiae infection.
doi:10.1128/IAI.70.1.171-176.2002
PMCID: PMC127643  PMID: 11748179
9.  Cloning and Molecular Characterization of a cDNA Clone Coding for Trichomonas vaginalis Alpha-Actinin and Intracellular Localization of the Protein 
Infection and Immunity  1998;66(10):4924-4931.
We have identified and sequenced a cDNA clone coding for Trichomonas vaginalis alpha-actinin. Analysis of the obtained sequence revealed that the 2,857-nucleotide-long cDNA contained an open reading frame encoding 849 amino acids which showed consistent homology with alpha-actinins of different species. Such homology was particularly significant in regions which have been reported to represent the actin-binding and Ca2+-binding domains in other alpha-actinins. The deduced protein was also characterized by the presence of a divergent central region thought to play a role in its high immunogenicity. A study of protein localization performed by immunofluorescence revealed that the protein is diffusely distributed throughout the T. vaginalis cytoplasm when the cell is pear shaped. When parasites adhere and transform into the amoeboid morphology, the protein is located only in areas close to the cytoplasmic membrane and colocalizes with actin. Concomitantly with transformation into the amoeboid morphology, alpha-actinin mRNA expression is upregulated.
PMCID: PMC108609  PMID: 9746598

Results 1-10 (10)