PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Genetic analysis of lung tumours of non-smoking subjects: p53 gene mutations are constantly associated with loss of heterozygosity at the FHIT locus. 
British Journal of Cancer  1998;78(1):73-78.
Lung cancer is strictly associated with tobacco smoking. Tumours developed in non-smoking subjects account for less than 10% of all lung cancers and show peculiar histopathological features, being prevalently adenocarcinomas. A number of genetic data suggest that their biological behaviour may be different from that of lung tumours caused by smoking, however the number of cases investigated to date is too low to draw definitive conclusions. We have examined the status of p53 and K-ras genes and the presence of loss of heterozygosity (LOH) at the FHIT locus in a series of 35 lung adenocarcinomas that developed in subjects who had never smoked. Results were compared with those obtained in a series of 35 lung adenocarcinomas from heavy-smoking subjects. In the group of non-smoking subjects p53 mutations and LOH at the FHIT locus were present in seven (20%) cases, and the two alterations were constantly associated (P < 0.0001), whereas they were not related in the series of carcinomas caused by smoking. In tumours developed in heavy-smoking subjects, the frequency of LOH at the FHIT locus was significantly higher (P = 0.006) than in tumours from non-smoking subjects. The frequency of p53 mutations in adenocarcinomas caused by smoking was not different from that seen in non-smoking subjects. However, in the group of smoking subjects we observed mostly G:C --> T:A transversions, whereas frameshift mutations and G:C --> A:T transitions were more frequently found in tumours from non-smoking subjects. No point mutations of the K-ras gene at codon 12 were seen in subjects who had never smoked, whereas they were present (mostly G:C --> T:A transversions) in 34% of tumours caused by smoking (P = 0.002). Our data suggest that lung adenocarcinomas developed in subjects who had never smoked represent a distinct biological entity involving a co-alteration of the p53 gene and the FHIT locus in 20% of cases.
PMCID: PMC2062949  PMID: 9662254
2.  p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. 
British Journal of Cancer  1997;75(2):230-235.
Chemotherapeutic management of ovarian cancers is a difficult task as these neoplasms show significant differences in chemosensitivity, even if they share identical clinicopathological features. The present study was undertaken to investigate the prognostic and predictive role of p53 alterations in ovarian cancer. To this end, using different technical approaches, i.e. genetic and immunohistochemical analyses, we analysed a series of 68 ovarian neoplasms including 15 low malignant potential (LMP) tumours and 53 invasive carcinomas. We never observed p53 abnormalities in LMP tumours. p53 alterations were present only in invasive ovarian carcinomas, and they were detected much more frequently in tumours characterized by high histological grade (P = 0.01) and advanced-stage disease (P = 0.006 and P = 0.05 for gene mutations and protein expression respectively). For 33 patients with invasive ovarian cancer, information was available concerning response to cisplatin-based chemotherapy. A strong correlation (P = 0.001) has emerged between p53 alterations and response to chemotherapy; only one (14%) of seven patients who had a pathological complete response to antiblastic drugs showed p53 aberrations, whereas 18 (82%) of 22 cases with partial response and all of the four non-responsive patients scored positive for p53 abnormalities. We also observed that patients with p53 mutations had a significantly shorter progression-free survival than patients with p53-negative tumours (P = 0.05). Taken together, our results strongly suggest that in epithelial ovarian malignancies tumours showing p53 aberrations are significantly less sensitive to chemotherapy and more aggressive than those with functional p53. Thus, a routine analysis of this gene could have profound implications for the treatment of ovarian cancer.
Images
PMCID: PMC2063269  PMID: 9010031

Results 1-2 (2)