Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Isokinetic Scapular Muscle Performance in Young Elite Gymnasts 
Journal of Athletic Training  2007;42(4):458-463.
Context: During gymnastic exercises, considerable force output is required in the shoulder girdle muscles. Isokinetic performance of the scapular muscles in young, elite gymnasts has not been examined.
Objective: To compare the isokinetic muscle performance of the scapular muscles between elite adolescent gymnasts and nonathletic adolescents to identify differences in strength, endurance, and muscle balance based on high-level sport participation.
Design: Single-session, repeated-measures design.
Setting: University human research laboratory.
Patients or Other Participants: Sixteen young, elite gymnasts and 26 age-matched nonathletic subjects participated in the study.
Intervention(s): Linear protraction-retraction movement in the scapular plane at 2 velocities (12.2 cm/s and 36.6 cm/s).
Main Outcome Measure(s): Isokinetic strength and endurance values, peak force/body mass, work/body mass, fatigue index (difference between the work performed in the first third and the last third of the test), and protraction to retraction strength ratios.
Results: Elite gymnasts demonstrated higher values for the protraction peak force/body mass than the control group demonstrated (P < .05), and they demonstrated higher protraction to retraction ratios on the nondominant side than on the dominant side (P < .05 at low velocity, P < .001 at high velocity). Work/body mass and fatigue index values were not statistically different between the groups. Side differences (P = .003) for retraction strength with lower protraction to retraction ratios (P < .001) were apparent in the gymnast group on the dominant side.
Conclusions: Scapular muscle performance in elite, young gymnasts is characterized by increased protraction strength and altered muscular balance around the scapula compared with nonathletic adolescents.
PMCID: PMC2140070  PMID: 18174933
scapulothoracic joint; scapular muscle balance
2.  Computed tomographic analysis of the quality of trunk muscles in asymptomatic and symptomatic lumbar discectomy patients 
No consensus exists on how rehabilitation programs for lumbar discectomy patients with persistent complaints after surgery should be composed. A better understanding of normal and abnormal postoperative trunk muscle condition might help direct the treatment goals.
A three-dimensional CT scan of the lumbar spine was obtained in 18 symptomatic and 18 asymptomatic patients who had undergone a lumbar discectomy 42 months to 83 months (median 63 months) previously. The psoas muscle (PS), the paraspinal muscle mass (PA) and the multifidus muscle (MF) were outlined at the L3, L4 and L5 level. Of these muscles, fat free Cross Sectional Area (CSA) and fat CSA were determined. CSA of the lumbar erector spinae (LES = longissimus thoracis + iliocostalis lumborum) was calculated by subtracting MF CSA from PA CSA. Mean muscle CSA of the left and right sides was calculated at each level. To normalize the data for interpersonal comparison, the mean CSA was divided by the CSA of the L3 vertebral body (mCSA = normalized fat-free muscle CSA; fCSA = normalized fat CSA). Differences in CSA between the pain group and the pain free group were examined using a General Linear Model (GLM). Three levels were examined to investigate the possible role of the level of operation.
In lumbar discectomy patients with pain, the mCSA of the MF was significantly smaller than in pain-free subjects (p = 0.009) independently of the level. The mCSA of the LES was significantly smaller in pain patients, but only on the L3 slice (p = 0.018). No significant difference in mCSA of the PS was found between pain patients and pain-free patients (p = 0.462). The fCSA of the MF (p = 0.186) and of the LES (p = 0.256) were not significantly different between both populations. However, the fCSA of the PS was significantly larger in pain patients than in pain-free patients. (p = 0.012).
The level of operation was never a significant factor.
CT comparison of MF, LES and PS muscle condition between lumbar discectomy patients without pain and patients with protracted postoperative pain showed a smaller fat-free muscle CSA of the MF at all levels examined, a smaller fat- free muscle CSA of the LES at the L3 level, and more fat in the PS in patients with pain. The level of operation was not found to be of importance. The present results suggest a general lumbar muscle dysfunction in the pain group, in particular of the deep stabilizing muscle system.
PMCID: PMC3079706  PMID: 21453531
3.  CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects 
European Spine Journal  2000;9(4):266-272.
Increasing documentation on the size and appearance of muscles in the lumbar spine of low back pain (LBP) patients is available in the literature. However, a comparative study between unoperated chronic low back pain (CLBP) patients and matched (age, gender, physical activity, height and weight) healthy controls with regard to muscle cross-sectional area (CSA) and the amount of fat deposits at different levels has never been undertaken. Moreover, since a recent focus in the physiotherapy management of patients with LBP has been the specific training of the stabilizing muscles, there is a need for quantifying and qualifying the multifidus. A comparative study between unoperated CLBP patients and matched control subjects was conducted. Twenty-three healthy volunteers and 32 patients were studied. The muscle and fat CSAs were derived from standard computed tomography (CT) images at three different levels, using computerized image analysis techniques. The muscles studied were: the total paraspinal muscle mass, the isolated multifidus and the psoas. The results showed that only the CSA of the multifidus and only at the lowest level (lower end-plate of L4) was found to be statistically smaller in LBP patients. As regards amount of fat, in none of the three studied muscles was a significant difference found between the two groups. An aetiological relationship between atrophy of the multifidus and the occurrence of LBP can not be ruled out as a possible explanation. Alternatively, atrophy may be the consequence of LBP: after the onset of pain and possible long-loop inhibition of the multifidus a combination of reflex inhibition and substitution patterns of the trunk muscles may work together and could cause a selective atrophy of the multifidus. Since this muscle is considered important for lumbar segmental stability, the phenomenon of atrophy may be a reason for the high recurrence rate of LBP.
PMCID: PMC3611341  PMID: 11261613
Key words Cross-sectional area; Fat deposits; Paravertebral muscles; Lumbar multifidus; Psoas

Results 1-3 (3)