Search tips
Search criteria

Results 1-25 (134)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Differential Dopamine Receptor Occupancy Underlies L-DOPA-Induced Dyskinesia in a Rat Model of Parkinson's Disease 
PLoS ONE  2014;9(3):e90759.
Dyskinesia is a major side effect of an otherwise effective L-DOPA treatment in Parkinson's patients. The prevailing view for the underlying presynaptic mechanism of L-DOPA-induced dyskinesia (LID) suggests that surges in dopamine (DA) via uncontrolled release from serotonergic terminals results in abnormally high level of extracellular striatal dopamine. Here we used high-sensitivity online microdialysis and PET imaging techniques to directly investigate DA release properties from serotonergic terminals both in the parkinsonian striatum and after neuronal transplantation in 6-OHDA lesioned rats. Although L-DOPA administration resulted in a drift in extracellular DA levels, we found no evidence for abnormally high striatal DA release from serotonin neurons. The extracellular concentration of DA remained at or below levels detected in the intact striatum. Instead, our results showed that an inefficient release pool of DA associated with low D2 receptor binding remained unchanged. Taken together, these findings suggest that differential DA receptor activation rather than excessive release could be the underlying mechanism explaining LID seen in this model. Our data have important implications for development of drugs targeting the serotonergic system to reduce DA release to manage dyskinesia in patients with Parkinson's disease.
PMCID: PMC3948692  PMID: 24614598
2.  Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos 
PLoS ONE  2014;9(3):e90619.
Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in metabolization.
PMCID: PMC3940891  PMID: 24594943
3.  Lethal Fighting in Nematodes Is Dependent on Developmental Pathway: Male-Male Fighting in the Entomopathogenic Nematode Steinernema longicaudum 
PLoS ONE  2014;9(2):e89385.
Aggressive encounters occur between competitors (particularly males) throughout the animal kingdom, and in some species can result in severe injury and death. Here we describe for the first time lethal interactions between male nematodes and provide evidence that the expression of this behaviour is developmentally controlled. Males of the entomopathogenic nematode Steinernema longicaudum coil around each other, resulting in injuries, paralysis and frequently death. The probability of death occurring between pairs of males was affected by the developmental pathway followed, being much greater among males that had passed through the infective juvenile (IJ, or dauer) stage than among males that had not. Post-IJ males are found only in newly colonised hosts, typically with few competing males present. Killing those few competitors may secure valuable resources (both females and a host cadaver for nourishment of offspring). Non-IJ males develop in subsequent generations within a host cadaver, where the presence of many closely related male competitors increases the risk:benefit ratio of fighting. Thus, passage through the IJ stage primes males for enhanced aggression in circumstances where this is more likely to result in increased reproductive success. Fighting occurred between males developing in mixed-sex social groups, indicating that it is an evolved trait and not an abnormal response to absence of females. This is supported by finding high mortality of males, but not of females, across a range of population densities in insect cadavers. We propose that these nematodes, with their relatively simple organization, may be a useful model for studies of aggression.
PMCID: PMC3933430  PMID: 24586738
4.  Automated protein-DNA interaction screening of Drosophila regulatory elements 
Nature methods  2011;8(12):1065-1070.
Drosophila melanogaster has one of the best characterized metazoan genomes in terms of functionally annotated regulatory elements. To explore how these elements contribute to gene regulation in the context of gene regulatory networks, we need convenient tools to identify the proteins that bind to them. Here, we present the development and validation of a highly automated protein-DNA interaction detection method, enabling the high-throughput yeast one-hybrid-based screening of DNA elements versus an array of full-length, sequence-verified clones containing 647 (over 85%) of predicted Drosophila transcription factors (TFs). Using six well-characterized regulatory elements (82 bp – 1kb), we identified 33 TF-DNA interactions of which 27 are novel. To simultaneously validate these interactions and locate their binding sites of involved TFs, we implemented a novel microfluidics-based approach that enables us to conduct hundreds of gel shift-like assays at once, thus allowing the retrieval of DNA occupancy data for each TF throughout the respective target DNA elements. Finally, we biologically validate several interactions and specifically identify two novel regulators of sine oculis gene expression and hence eye development.
PMCID: PMC3929264  PMID: 22037703
5.  L1cam Is Crucial for Cell Locomotion and Terminal Translocation of the Soma in Radial Migration during Murine Corticogenesis 
PLoS ONE  2014;9(1):e86186.
L1cam (L1) is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. Although we recently demonstrated that L1 plays an important role in neuronal migration during cortical histogenesis, the mechanisms of delayed migration have still not been clarified. In this study, we found that cell locomotion in the intermediate zone and terminal translocation in the primitive cortical zone (PCZ) were affected by L1-knockdown (L1-KD). Time-lapse analyses revealed that L1-KD neurons produced by in utero electroporation of shRNA targeting L1 (L1-shRNAs) molecules showed decreased locomotion velocity in the intermediate zone, compared with control neurons. Furthermore, L1-KD neurons showed longer and more undulated leading processes during translocation through the primitive cortical zone. The curvature index, a quantitative index for curvilinearity, as well as the length of the leading process, were increased, whereas the somal movement was decreased in L1-KD neurons during terminal translocation in the PCZ. These results suggest that L1 has a role in radial migration of cortical neurons.
PMCID: PMC3904877  PMID: 24489698
6.  The Vertebrate RCAN Gene Family: Novel Insights into Evolution, Structure and Regulation 
PLoS ONE  2014;9(1):e85539.
Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5′ region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.
PMCID: PMC3896409  PMID: 24465593
7.  The Morphometry of Solenopsis Fire Ants 
PLoS ONE  2013;8(11):e79559.
Size-related changes of body shape were explored in 15 polymorphic species of Solenopsis fire ants by analyzing body weight along with linear measurements of 24 body parts. Log regression slopes were used to detect changes of shape with increasing size. Within species, the largest workers weighed from about 5 to 30-fold as much as the smallest. The range of within-species body lengths varied from 1.6 mm to 4 mm. As worker size increased, the gaster tended to make up a larger proportion of body length, usually at the cost of the petiole, and rarely at the cost of head length or mesosoma length. In most, the relative volume of the gaster increased and that of the head and mesosoma decreased. Most also showed an increasingly “humped” mesosoma. For all species, head shape changed from barrel-shaped to heart-shaped as worker size increased. Antennae became relatively shorter as the relative size of the club decreased. Shape changes of the legs were more variable. S. geminata was exceptional in the extreme nature of its head shape change, and was the only species in which relative head volume increased and gaster volume decreased with increasing body size. With the exception of S. geminata, the allometric rules governing shape are remarkably similar across species, suggesting a genus-level developmental scheme that is not easily modified by evolution. It also suggests that the evolution of shape is highly constrained by these conserved growth rules, and that it acts primarily (perhaps only) through allometric growth. The results are discussed in light of the growth of imaginal discs in a resource-limited body (the pupa). The substantial variation of allometries within species and across localities is also discussed in relation to using allometric patterns to identify species or to construct phylogenies.
PMCID: PMC3834273  PMID: 24260250
8.  An appetite for destruction 
Autophagy  2012;8(9):1401-1403.
Autophagy plays an important role in cellular survival by resupplying cells with nutrients during starvation or by clearing misfolded proteins and damaged organelles and thereby preventing degenerative diseases. Conversely, the autophagic process is also recognized as a cellular death mechanism. The circumstances that determine whether autophagy has a beneficial or a detrimental role in cellular survival are currently unclear. We recently showed that autophagy induction is detrimental in neurons that lack a functional AMPK enzyme (AMP-activated protein kinase) and that suffer from severe metabolic stress. We further demonstrated that autophagy and AMPK are interconnected in a negative feedback loop that prevents excessive and destructive stimulation of the autophagic process. Finally, we uncovered a new survival mechanism in AMPK-deficient neurons—cell cannibalism.
PMCID: PMC3442891  PMID: 22885706
AMPK; Drosophila; autophagy; cell death; croquemort; metabolism; neurodegeneration; phagocytosis; photoreceptor
9.  A Mid-Life Vitamin A Supplementation Prevents Age-Related Spatial Memory Deficits and Hippocampal Neurogenesis Alterations through CRABP-I 
PLoS ONE  2013;8(8):e72101.
Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions.
PMCID: PMC3747058  PMID: 23977218
10.  Regular Moderate or Intense Exercise Prevents Depression-Like Behavior without Change of Hippocampal Tryptophan Content in Chronically Tryptophan-Deficient and Stressed Mice 
PLoS ONE  2013;8(7):e66996.
Regular exercise has an antidepressant effect in human subjects. Studies using animals have suggested that the antidepressant effect of exercise is attributable to an increase of brain 5-hydroxytryptamine (5-HT); however, the precise mechanism underlying the antidepressant action via exercise is unclear. In contrast, the effect of 5-HT on antidepressant activity has not been clarified, in part because the therapeutic response to antidepressant drugs has a time lag in spite of the rapid increase of brain 5-HT upon administration of these drugs. This study was designed to investigate the contribution of brain 5-HT to the antidepressant effect of exercise. Mice were fed a tryptophan-deficient diet and stressed using chronic unpredictable stress (CUS) for 4 weeks with or without the performance of either moderate or intense exercise on a treadmill 3 days per week. The findings demonstrated that the onset of depression-like behavior is attributable not to chronic reduction of 5-HT but to chronic stress. Regular exercise, whether moderate or intense, prevents depression-like behavior with an improvement of adult hippocampal cell proliferation and survival and without the recovery of 5-HT. Concomitantly, the mice that exercised showed increased hippocampal noradrenaline. Regular exercise prevents the impairment of not long-term memory but short-term memory in a 5-HT-reduced state. Together, these findings suggest that: (1) chronic reduction of brain 5-HT may not contribute to the onset of depression-like behavior; (2) regular exercise, whether moderate or intense, prevents the onset of chronic stress-induced depression-like behavior independent of brain 5-HT and dependent on brain adrenaline; and (3) regular exercise prevents chronic tryptophan reduction-induced impairment of not long-term but short-term memory.
PMCID: PMC3701529  PMID: 23861751
11.  A Selfish Genetic Element Influencing Longevity Correlates with Reactive Behavioural Traits in Female House Mice (Mus domesticus) 
PLoS ONE  2013;8(6):e67130.
According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t) are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+). As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.
PMCID: PMC3691141  PMID: 23826211
12.  Intrinsic Constraints on Sympodial Growth Morphologies of Azooxanthellate Scleractinian Coral Dendrophyllia 
PLoS ONE  2013;8(5):e63790.
Asexual increase occurs in virtually all colonial organisms. However, little is known about the intrinsic mechanisms that control asexual reproduction and the resultant morphologies of colonies. Scleractinian corals, both symbiotic (zoaxanthellate) and non-symbiotic (azooxanthellate) corals are known to form elaborate colonies. To better understand the growth mechanisms that control species-specific type of colony in azooxanthellate dendrophyllid scleractinian corals, we have studied details of the budding pattern in the sympodial colonies of Dendrophyllia boschmai and Dendrophyllia cribrosa.
Principal Findings
Budding exhibits the following regularities: (1) the two directive septa of offset corallites are oriented almost perpendicular to the growth direction of parent corallites; (2) offsets generally occur in either of the lateral primary septa that occur on one side of a corallite; the individuals thus show a definite polarity with respect to the directive septa, and only when branching dichotomously offsets occur in both primary septa; (3) the lateral corallites grow more-or-less diagonally upwards; and (4) the regularities and polarities are maintained throughout growth. Given these regularities, D. boschmai grows in a zigzag fashion by alternately budding on the right and left sites. In contrast, D. cribrosa grows helically by budding at a particular site.
The strict constraints on budding regularities and shifts in budding sites observed in the sympodial growth forms of corals greatly affect resulting morphologies in azooxanthellate coral colonies. A precise understanding of these intrinsic constraints leads to a fundamental comprehension of colony-forming mechanisms in modular organisms.
PMCID: PMC3646883  PMID: 23667672
13.  The Drosophila BTB Domain Protein Jim Lovell Has Roles in Multiple Larval and Adult Behaviors 
PLoS ONE  2013;8(4):e61270.
Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov66.
PMCID: PMC3631165  PMID: 23620738
14.  Can We Predict Personality in Fish? Searching for Consistency over Time and across Contexts 
PLoS ONE  2013;8(4):e62037.
The interest in animal personality, broadly defined as consistency of individual behavioural traits over time and across contexts, has increased dramatically over the last years. Individual differences in behaviour are no longer recognised as noise around a mean but rather as adaptive variation and thus, essentially, raw material for evolution. Animal personality has been considered evolutionary conserved and has been shown to be present in all vertebrates including fish. Despite the importance of evolutionary and comparative aspects in this field, few studies have actually documented consistency across situations in fish. In addition, most studies are done with individually housed fish which may pose additional challenges when interpreting data from social species. Here, we investigate, for the first time in fish, whether individual differences in behavioural responses to a variety of challenges are consistent over time and across contexts using both individual and grouped-based tests. Twenty-four juveniles of Gilthead seabream Sparus aurata were subjected to three individual-based tests: feed intake recovery in a novel environment, novel object and restraining and to two group-based tests: risk-taking and hypoxia. Each test was repeated twice to assess consistency of behavioural responses over time. Risk taking and escape behaviours during restraining were shown to be significantly consistent over time. In addition, consistency across contexts was also observed: individuals that took longer to recover feed intake after transfer into a novel environment exhibited higher escape attempts during a restraining test and escaped faster from hypoxia conditions. These results highlight the possibility to predict behaviour in groups from individual personality traits.
PMCID: PMC3628343  PMID: 23614007
15.  Absence of Complementary Sex Determination in the Parasitoid Wasp Genus Asobara (Hymenoptera: Braconidae) 
PLoS ONE  2013;8(4):e60459.
An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.
PMCID: PMC3614920  PMID: 23637750
16.  Mcph1-Deficient Mice Reveal a Role for MCPH1 in Otitis Media 
PLoS ONE  2013;8(3):e58156.
Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1tm1a/tm1a) mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1tm1a/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1tm1a/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1tm1a/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.
PMCID: PMC3596415  PMID: 23516444
17.  Anent the Genomics of Spermatogenesis in Drosophila melanogaster 
PLoS ONE  2013;8(2):e55915.
An appreciable fraction of the Drosophila melanogaster genome is dedicated to male fertility. One approach to characterizing this subset of the genome is through the study of male-sterile mutations. We studied the relation between vital and male-fertility genes in three large autosomal regions that were saturated for lethal and male-sterile mutations. The majority of male-sterile mutations affect genes that are exclusively expressed in males. These genes are required only for male fertility, and several mutant alleles of each such gene were encountered. A few male-sterile mutations were alleles of vital genes that are expressed in both males and females. About one-fifth of the genes in Drosophila melanogaster show male-specific expression in adults. Although some earlier studies found a paucity of genes on the X chromosome showing male-biased expression, we did not find any significant differences between the X chromosome and the autosomes either in the relative frequencies of mutations to male sterility or in the frequencies of genes with male-specific expression in adults. Our results suggest that as much as 25% of the Drosophila genome may be dedicated to male fertility.
PMCID: PMC3567030  PMID: 23409089
18.  Seizures Induced by Pentylenetetrazole in the Adult Zebrafish: A Detailed Behavioral Characterization 
PLoS ONE  2013;8(1):e54515.
Pentylenetetrazole (PTZ) is a common convulsant agent used in animal models to investigate the mechanisms of seizures. Although adult zebrafish have been recently used to study epileptic seizures, a thorough characterization of the PTZ-induced seizures in this animal model is missing. The goal of this study was to perform a detailed temporal behavior profile characterization of PTZ-induced seizure in adult zebrafish. The behavioral profile during 20 min of PTZ immersion (5, 7.5, 10, and 15 mM) was characterized by stages defined as scores: (0) short swim, (1) increased swimming activity and high frequency of opercular movement, (2) erratic movements, (3) circular movements, (4) clonic seizure-like behavior, (5) fall to the bottom of the tank and tonic seizure-like behavior, (6) death. Animals exposed to distinct PTZ concentrations presented different seizure profiles, intensities and latencies to reach all scores. Only animals immersed into 15 mM PTZ showed an increased time to return to the normal behavior (score 0), after exposure. Total mortality rate at 10 and 15 mM were 33% and 50%, respectively. Considering all behavioral parameters, 5, 7.5, 10, and 15 mM PTZ, induced seizures with low, intermediate, and high severity, respectively. Pretreatment with diazepam (DZP) significantly attenuated seizure severity. Finally, the brain PTZ levels in adult zebrafish immersed into the chemoconvulsant solution at 5 and 10 mM were comparable to those described for the rodent model, with a peak after a 20-min of exposure. The PTZ brain levels observed after 2.5-min PTZ exposure and after 60-min removal from exposure were similar. Altogether, our results showed a detailed temporal behavioral characterization of a PTZ epileptic seizure model in adult zebrafish. These behavioral analyses and the simple method for PTZ quantification could be considered as important tools for future investigations and translational research.
PMCID: PMC3549980  PMID: 23349914
19.  Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes 
Human Molecular Genetics  2013;22(8):1539-1557.
Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.
PMCID: PMC3605831  PMID: 23307927
20.  The Right Time to Happen: Play Developmental Divergence in the Two Pan Species 
PLoS ONE  2012;7(12):e52767.
Bonobos, compared to chimpanzees, are highly motivated to play as adults. Therefore, it is interesting to compare the two species at earlier developmental stages to determine how and when these differences arise. We measured and compared some play parameters between the two species including frequency, number of partners (solitary, dyadic, and polyadic play), session length, and escalation into overt aggression. Since solitary play has a role in developing cognitive and physical skills, it is not surprising that chimpanzees and bonobos share similar developmental trajectories in the motivation to engage in this activity. The striking divergence in play developmental pathways emerged for social play. Infants of the two species showed comparable social play levels, which began to diverge during the juvenile period, a ‘timing hotspot’ for play development. Compared to chimpanzees, social play sessions in juvenile bonobos escalated less frequently into overt aggression, lasted longer, and frequently involved more than two partners concurrently (polyadic play). In this view, play fighting in juvenile bonobos seems to maintain a cooperative mood, whereas in juvenile chimpanzees it acquires more competitive elements. The retention of juvenile traits into adulthood typical of bonobos can be due to a developmental delay in social inhibition. Our findings show that the divergence of play ontogenetic pathways between the two Pan species and the relative emergence of play neotenic traits in bonobos can be detected before individuals reach sexual maturity. The high play motivation showed by adult bonobos compared to chimpanzees is probably the result of a long developmental process, rooted in the delicate transitional phase, which leads subjects from infancy to juvenility.
PMCID: PMC3530486  PMID: 23300765
21.  Multiple Mechanisms Contribute to Leakiness of a Frameshift Mutation in Canine Cone-Rod Dystrophy 
PLoS ONE  2012;7(12):e51598.
Mutations in RPGRIP1 are associated with early onset retinal degenerations in humans and dogs. Dogs homozygous for a 44 bp insertion including a polyA29 tract potentially leading to premature truncation of the protein, show cone rod degeneration. This is rapid and blinding in a colony of dogs in which the mutation was characterised but in dogs with the same mutation in the pet population there is very variable disease severity and rate of progression.
We hypothesized that this variability must be associated with leakiness of the RPGRIP1 mutation, allowing continued RPGRIP1 production. The study was designed to discover mechanisms that might allow such leakiness.
We analysed alternate start sites and splicing of RPGRIP1 transcripts; variability of polyAn length in the insertion and slippage at polyAn during transcription/translation.
Results and Significance
We observed a low rate of use of alternative start codons having potential to allow forms of transcript not including the insertion, with the possibility of encoding truncated functional RPGRIP1 protein isoforms. Complex alternative splicing was observed, but did not increase this potential. Variable polyAn length was confirmed in DNA from different RPGRIP1−/− dogs, yet polyAn variability did not correspond with the clinical phenotypes and no individual was found that carried a polyAn tract capable of encoding an in-frame variant. Remarkably though, in luciferase reporter gene assays, out-of-frame inserts still allowed downstream reporter gene expression at some 40% of the efficiency of in-frame controls. This indicates a major role of transcriptional or translational frameshifting in RPGRIP1 expression. The known slippage of reverse transcriptases as well as RNA polymerases and thermostable DNA polymerases on oligoA homopolymers meant that we could not distinguish whether the majority of slippage was transcriptional or translational. This leakiness at the mutation site may allow escape from severe effects of the mutation for some dogs.
PMCID: PMC3520932  PMID: 23251588
22.  ASM-3 Acid Sphingomyelinase Functions as a Positive Regulator of the DAF-2/AGE-1 Signaling Pathway and Serves as a Novel Anti-Aging Target 
PLoS ONE  2012;7(9):e45890.
In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.
PMCID: PMC3457945  PMID: 23049887
23.  Promotion of Spinal Cord Regeneration by Neural Stem Cell-Secreted Trimerized Cell Adhesion Molecule L1 
PLoS ONE  2012;7(9):e46223.
The L1 cell adhesion molecule promotes neurite outgrowth and neuronal survival in homophilic and heterophilic interactions and enhances neurite outgrowth and neuronal survival homophilically, i.e. by self binding. We investigated whether exploitation of homophilic and possibly also heterophilic mechanisms of neural stem cells overexpressing the full-length transmembrane L1 and a secreted trimer engineered to express its extracellular domain would be more beneficial for functional recovery of the compression injured spinal cord of adult mice than stem cells overexpressing only full-length L1 or the parental, non-engineered cells. Here we report that stem cells expressing trimeric and full-length L1 are indeed more efficient in promoting locomotor recovery when compared to stem cells overexpressing only full-length L1 or the parental stem cells. The trimer expressing stem cells were also more efficient in reducing glial scar volume and expression of chondroitin sulfates and the chondroitin sulfate proteoglycan NG2. They were also more efficient in enhancing regrowth/sprouting and/or preservation of serotonergic axons, and remyelination and/or myelin sparing. Moreover, degeneration/dying back of corticospinal cord axons was prevented more by the trimer expressing stem cells. These results encourage the view that stem cells engineered to drive the beneficial functions of L1 via homophilic and heterophilic interactions are functionally optimized and may thus be of therapeutic value.
PMCID: PMC3458024  PMID: 23049984
24.  The Early Life History of the Clam Macoma balthica in a High CO2 World 
PLoS ONE  2012;7(9):e44655.
This study investigated the effects of experimentally manipulated seawater carbonate chemistry on several early life history processes of the Baltic tellin (Macoma balthica), a widely distributed bivalve that plays a critical role in the functioning of many coastal habitats. We demonstrate that ocean acidification significantly depresses fertilization, embryogenesis, larval development and survival during the pelagic phase. Fertilization and the formation of a D-shaped shell during embryogenesis were severely diminished: successful fertilization was reduced by 11% at a 0.6 pH unit decrease from present (pH 8.1) conditions, while hatching success was depressed by 34 and 87%, respectively at a 0.3 and 0.6 pH unit decrease. Under acidified conditions, larvae were still able to develop a shell during the post-embryonic phase, but higher larval mortality rates indicate that fewer larvae may metamorphose and settle in an acidified ocean. The cumulative impact of decreasing seawater pH on fertilization, embryogenesis and survival to the benthic stage is estimated to reduce the number of competent settlers by 38% for a 0.3 pH unit decrease, and by 89% for a 0.6 pH unit decrease from present conditions. Additionally, slower growth rates and a delayed metamorphosis at a smaller size were indicative for larvae developed under acidified conditions. This may further decline the recruit population size due to a longer subjection to perturbations, such as predation, during the pelagic phase. In general, early life history processes were most severely compromised at ∼pH 7.5, which corresponds to seawater undersaturated with respect to aragonite. Since recent models predict a comparable decrease in pH in coastal waters in the near future, this study indicates that future populations of Macoma balthica are likely to decline as a consequence of ongoing ocean acidification.
PMCID: PMC3438177  PMID: 22970279
25.  Metabolic Rate Regulates L1 Longevity in C. elegans 
PLoS ONE  2012;7(9):e44720.
Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1) and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK), as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.
PMCID: PMC3435313  PMID: 22970296

Results 1-25 (134)