PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination 
BMC Plant Biology  2012;12:31.
Background
Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases.
Results
Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels.
Conclusions
Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role in the programmed cell death associated with post-germination of the coffee grain. Expression analysis of the cysteine proteinase inhibitor genes suggests that CcCPI-1 could primarily be involved in modulating the activity of grain CP activity; while CcCPI-4 may play roles modulating grain CP activity and in the protection of the young coffee seedlings from insects and pathogens. CcCPI-2 and CcCPI-3, having lower and more widespread expression, could be more general "house-keeping" CPI genes.
doi:10.1186/1471-2229-12-31
PMCID: PMC3311568  PMID: 22380654
Cysteine proteinase; Cysteine proteinase inhibitor; Proteinase activity; Coffee
2.  Characterization and Expression Analysis of Genes Directing Galactomannan Synthesis in Coffee 
Annals of Botany  2008;102(2):207-220.
Background and Aims
Galactomannans act as storage reserves for the seeds in some plants, such as guar (Cyamopsis tetragonoloba) and coffee (Coffea arabica and Coffea canephora). In coffee, the galactomannans can represent up to 25 % of the mass of the mature green coffee grain, and they exert a significant influence on the production of different types of coffee products. The objective of the current work was to isolate and characterize cDNA encoding proteins responsible for galactomannan synthesis in coffee and to study the expression of the corresponding transcripts in the developing coffee grain from C. arabica and C. canephora, which potentially exhibit slight galactomannan variations. Comparative gene expression analysis was also carried out for several other tissues of C. arabica and C. canephora.
Methods
cDNA banks, RACE-PCR and genome walking were used to generate full-length cDNA for two putative coffee mannan synthases (ManS) and two galactomannan galactosyl transferases (GMGT). Gene-specific probe-primer sets were then generated and used to carry out comparative expression analysis of the corresponding genes in different coffee tissues using quantitative RT-PCR
Key Results
Two of the putative galactomannan biosynthetic genes, ManS1 and GMGT1, were demonstrated to have very high expression in the developing coffee grain of both Coffea species during endosperm development, consistent with our proposal that these two genes are responsible for the production of the majority of the galactomannans found in the grain. In contrast, the expression data presented indicates that the ManS2 gene product is probably involved in the synthesis of the galactomannans found in green tissue.
Conclusions
The identification of genes implicated in galactomannan synthesis in coffee are presented. The data obtained will enable more detailed studies on the biosynthesis of this important component of coffee grain and contribute to a better understanding of some functional differences between grain from C. arabica and C. canephora.
doi:10.1093/aob/mcn076
PMCID: PMC2712370  PMID: 18562467
Coffea; galactomannans; mannan synthase; galactomannan galactosyl transferase; coffee grain
3.  Isolation and Characterization of cDNA Encoding Three Dehydrins Expressed During Coffea canephora (Robusta) Grain Development 
Annals of Botany  2006;97(5):755-765.
• Background and Aims Dehydrins, or group 2 late embryogenic abundant proteins (LEA), are hydrophilic Gly-rich proteins that are induced in vegetative tissues in response to dehydration, elevated salt, and low temperature, in addition to being expressed during the late stages of seed maturation. With the aim of characterizing and studying genes involved in osmotic stress tolerance in coffee, several full-length cDNA-encoding dehydrins (CcDH1, CcDH2 and CcDH3) and an LEA protein (CcLEA1) from Coffea canephora (robusta) were isolated and characterized.
• Methods The protein sequences deduced from the full-length cDNA were analysed to classify each dehydrin/LEA gene product and RT–PCR was used to determine the expression pattern of all four genes during pericarp and grain development, and in several other tissues of C. arabica and C. canephora. Primer-assisted genome walking was used to isolate the promoter region of the grain specific dehydrin gene (CcDH2).
• Key Results The CcDH1 and CcDH2 genes encode Y3SK2 dehydrins and the CcDH3 gene encodes an SK3 dehydrin. CcDH1 and CcDH2 are expressed during the final stages of arabica and robusta grain development, but only the CcDH1 transcripts are clearly detected in other tissues such as pericarp, leaves and flowers. CcDH3 transcripts are also found in developing arabica and robusta grain, in addition to being detected in pericarp, stem, leaves and flowers. CcLEA1 transcripts were only detected during a brief period of grain development. Finally, over 1 kb of genomic sequence potentially encoding the entire grain-specific promoter region of the CcDH2 gene was isolated and characterized.
• Conclusions cDNA sequences for three dehydrins and one LEA protein have been obtained and the expression of the associated genes has been determined in various tissues of arabica and robusta coffees. Because induction of dehydrin gene expression is associated with osmotic stress in other plants, the dehydrin sequences presented here will facilitate future studies on the induction and control of the osmotic stress response in coffee. The unique expression pattern observed for CcLEA1, and the expression of a related gene in other plants, suggests that this gene may play an important role in the development of grain endosperm tissue. Genomic DNA containing the grain-specific CcDH2 promoter region has been cloned. Sequence analysis indicates that this promoter contains several putative regulatory sites implicated in the control of both seed- and osmotic stress-specific gene expression. Thus, the CcDH2 promoter is likely to be a useful tool for basic studies on the control of gene expression during both grain maturation and osmotic stress in coffee.
doi:10.1093/aob/mcl032
PMCID: PMC2803416  PMID: 16504969
Dehydrins; late embryogenic abundant protein (LEA); seed development; Coffea; C. canephora; C. arabica; Rubiaceae

Results 1-3 (3)